summarylogtreecommitdiffstats
diff options
context:
space:
mode:
authorKyle De'Vir2019-05-14 01:17:13 +1000
committerKyle De'Vir2019-05-14 01:17:13 +1000
commitee545f391b146ccbaf77a478156bdd4d114d6e8a (patch)
treee3924bd789c8b1f0418942b4a721b76c67a73288
parentef6015078d7e66b52ba2224cc09d28355f86695e (diff)
downloadaur-ee545f391b146ccbaf77a478156bdd4d114d6e8a.tar.gz
Partial changes 1
-rw-r--r--.SRCINFO4
-rw-r--r--01-Undead-PDS-0.99o-rebase-by-TkG.patch8397
-rw-r--r--02-Glitched-PDS-by-TkG.patch164
-rw-r--r--PKGBUILD8
4 files changed, 8571 insertions, 2 deletions
diff --git a/.SRCINFO b/.SRCINFO
index 9582b77e89fc..d5802892501d 100644
--- a/.SRCINFO
+++ b/.SRCINFO
@@ -17,6 +17,8 @@ pkgbase = linux-pds
source = 60-linux.hook
source = 90-linux.hook
source = linux.preset
+ source = 01-Undead-PDS-0.99o-rebase-by-TkG.patch
+ source = 02-Glitched-PDS-by-TkG.patch
source = 01-Glitched-PDS-by-TkG.patch
source = 02-Undead-PDS-0.99o-rebase-by-TkG.patch
validpgpkeys = ABAF11C65A2970B130ABE3C479BE3E4300411886
@@ -28,6 +30,8 @@ pkgbase = linux-pds
sha512sums = 7ad5be75ee422dda3b80edd2eb614d8a9181e2c8228cd68b3881e2fb95953bf2dea6cbe7900ce1013c9de89b2802574b7b24869fc5d7a95d3cc3112c4d27063a
sha512sums = 2718b58dbbb15063bacb2bde6489e5b3c59afac4c0e0435b97fe720d42c711b6bcba926f67a8687878bd51373c9cf3adb1915a11666d79ccb220bf36e0788ab7
sha512sums = 2dc6b0ba8f7dbf19d2446c5c5f1823587de89f4e28e9595937dd51a87755099656f2acec50e3e2546ea633ad1bfd1c722e0c2b91eef1d609103d8abdc0a7cbaf
+ sha512sums = cdfa59b9f369a5795c93ced526e7f480851ef439f3379e6c1a32b9cf29232cd4671fe4b0ddb50c5d996e23db71582844e233fee96bb551827eaf70b0be1d18dc
+ sha512sums = 3ff796cbc213ae5f43a55f1ba92406bba04703db3459040beacacd9baceb3138021e908f440bd101cc76cb725e418ebdc8ab776327801690da30a1477bc84753
sha512sums = 3ff796cbc213ae5f43a55f1ba92406bba04703db3459040beacacd9baceb3138021e908f440bd101cc76cb725e418ebdc8ab776327801690da30a1477bc84753
sha512sums = cdfa59b9f369a5795c93ced526e7f480851ef439f3379e6c1a32b9cf29232cd4671fe4b0ddb50c5d996e23db71582844e233fee96bb551827eaf70b0be1d18dc
diff --git a/01-Undead-PDS-0.99o-rebase-by-TkG.patch b/01-Undead-PDS-0.99o-rebase-by-TkG.patch
new file mode 100644
index 000000000000..d66a7b12dd40
--- /dev/null
+++ b/01-Undead-PDS-0.99o-rebase-by-TkG.patch
@@ -0,0 +1,8397 @@
+From 9be9808d7744da988ce921476581ae0feab4e304 Mon Sep 17 00:00:00 2001
+From: Tk-Glitch <ti3nou@gmail.com>
+Date: Mon, 6 May 2019 15:49:36 +0200
+Subject: PDS 099o, 5.1 rebase
+
+
+diff --git a/Documentation/scheduler/sched-PDS-mq.txt b/Documentation/scheduler/sched-PDS-mq.txt
+new file mode 100644
+index 000000000000..709e86f6487e
+--- /dev/null
++++ b/Documentation/scheduler/sched-PDS-mq.txt
+@@ -0,0 +1,56 @@
++ Priority and Deadline based Skiplist multiple queue Scheduler
++ -------------------------------------------------------------
++
++CONTENT
++========
++
++ 0. Development
++ 1. Overview
++ 1.1 Design goal
++ 1.2 Design summary
++ 2. Design Detail
++ 2.1 Skip list implementation
++ 2.2 Task preempt
++ 2.3 Task policy, priority and deadline
++ 2.4 Task selection
++ 2.5 Run queue balance
++ 2.6 Task migration
++
++
++0. Development
++==============
++
++Priority and Deadline based Skiplist multiple queue scheduler, referred to as
++PDS from here on, is developed upon the enhancement patchset VRQ(Variable Run
++Queue) for BFS(Brain Fuck Scheduler by Con Kolivas). PDS inherits the existing
++design from VRQ and inspired by the introduction of skiplist data structure
++to the scheduler by Con Kolivas. However, PDS is different from MuQSS(Multiple
++Queue Skiplist Scheduler, the successor after BFS) in many ways.
++
++1. Overview
++===========
++
++1.1 Design goal
++---------------
++
++PDS is designed to make the cpu process scheduler code to be simple, but while
++efficiency and scalable. Be Simple, the scheduler code will be easy to be read
++and the behavious of scheduler will be easy to predict. Be efficiency, the
++scheduler shall be well balance the thoughput performance and task interactivity
++at the same time for different properties the tasks behave. Be scalable, the
++performance of the scheduler should be in good shape with the glowing of
++workload or with the growing of the cpu numbers.
++
++1.2 Design summary
++------------------
++
++PDS is described as a multiple run queues cpu scheduler. Each cpu has its own
++run queue. A heavry customized skiplist is used as the backend data structure
++of the cpu run queue. Tasks in run queue is sorted by priority then virtual
++deadline(simplfy to just deadline from here on). In PDS, balance action among
++run queues are kept as less as possible to reduce the migration cost. Cpumask
++data structure is widely used in cpu affinity checking and cpu preemption/
++selection to make PDS scalable with increasing cpu number.
++
++
++To be continued...
+diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
+index aa058aa7bf28..8bea8e9ca77d 100644
+--- a/Documentation/sysctl/kernel.txt
++++ b/Documentation/sysctl/kernel.txt
+@@ -77,6 +77,7 @@ show up in /proc/sys/kernel:
+ - randomize_va_space
+ - real-root-dev ==> Documentation/admin-guide/initrd.rst
+ - reboot-cmd [ SPARC only ]
++- rr_interval
+ - rtsig-max
+ - rtsig-nr
+ - sched_energy_aware
+@@ -100,6 +101,7 @@ show up in /proc/sys/kernel:
+ - unknown_nmi_panic
+ - watchdog
+ - watchdog_thresh
++- yield_type
+ - version
+
+ ==============================================================
+@@ -881,6 +883,20 @@ rebooting. ???
+
+ ==============================================================
+
++rr_interval: (PDS CPU scheduler only)
++
++This is the smallest duration that any cpu process scheduling unit
++will run for. Increasing this value can increase throughput of cpu
++bound tasks substantially but at the expense of increased latencies
++overall. Conversely decreasing it will decrease average and maximum
++latencies but at the expense of throughput. This value is in
++milliseconds and the default value chosen depends on the number of
++cpus available at scheduler initialisation with a minimum of 6.
++
++Valid values are from 1-1000.
++
++==============================================================
++
+ rtsig-max & rtsig-nr:
+
+ The file rtsig-max can be used to tune the maximum number
+@@ -1143,3 +1159,13 @@ The softlockup threshold is (2 * watchdog_thresh). Setting this
+ tunable to zero will disable lockup detection altogether.
+
+ ==============================================================
++
++yield_type: (MuQSS/VRQ CPU scheduler only)
++
++This determines what type of yield calls to sched_yield will perform.
++
++ 0 - No yield.
++ 1 - Yield only to better priority/deadline tasks. (default)
++ 2 - Expire timeslice and recalculate deadline.
++
++==============================================================
+diff --git a/arch/powerpc/platforms/cell/spufs/sched.c b/arch/powerpc/platforms/cell/spufs/sched.c
+index 9fcccb4490b9..7f2b6c226eed 100644
+--- a/arch/powerpc/platforms/cell/spufs/sched.c
++++ b/arch/powerpc/platforms/cell/spufs/sched.c
+@@ -64,11 +64,6 @@ static struct task_struct *spusched_task;
+ static struct timer_list spusched_timer;
+ static struct timer_list spuloadavg_timer;
+
+-/*
+- * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
+- */
+-#define NORMAL_PRIO 120
+-
+ /*
+ * Frequency of the spu scheduler tick. By default we do one SPU scheduler
+ * tick for every 10 CPU scheduler ticks.
+diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
+index 62fc3fda1a05..764fc6eef19f 100644
+--- a/arch/x86/Kconfig
++++ b/arch/x86/Kconfig
+@@ -1017,6 +1017,22 @@ config NR_CPUS
+ config SCHED_SMT
+ def_bool y if SMP
+
++config SMT_NICE
++ bool "SMT (Hyperthreading) aware nice priority and policy support"
++ depends on SCHED_PDS && SCHED_SMT
++ default y
++ ---help---
++ Enabling Hyperthreading on Intel CPUs decreases the effectiveness
++ of the use of 'nice' levels and different scheduling policies
++ (e.g. realtime) due to sharing of CPU power between hyperthreads.
++ SMT nice support makes each logical CPU aware of what is running on
++ its hyperthread siblings, maintaining appropriate distribution of
++ CPU according to nice levels and scheduling policies at the expense
++ of slightly increased overhead.
++
++ If unsure say Y here.
++
++
+ config SCHED_MC
+ def_bool y
+ prompt "Multi-core scheduler support"
+diff --git a/drivers/cpufreq/cpufreq_conservative.c b/drivers/cpufreq/cpufreq_conservative.c
+index 4268f87e99fc..47fa3a161770 100644
+--- a/drivers/cpufreq/cpufreq_conservative.c
++++ b/drivers/cpufreq/cpufreq_conservative.c
+@@ -31,8 +31,8 @@ struct cs_dbs_tuners {
+ };
+
+ /* Conservative governor macros */
+-#define DEF_FREQUENCY_UP_THRESHOLD (80)
+-#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
++#define DEF_FREQUENCY_UP_THRESHOLD (63)
++#define DEF_FREQUENCY_DOWN_THRESHOLD (26)
+ #define DEF_FREQUENCY_STEP (5)
+ #define DEF_SAMPLING_DOWN_FACTOR (1)
+ #define MAX_SAMPLING_DOWN_FACTOR (10)
+diff --git a/drivers/cpufreq/cpufreq_ondemand.c b/drivers/cpufreq/cpufreq_ondemand.c
+index 6b423eebfd5d..e8c8aff4cba4 100644
+--- a/drivers/cpufreq/cpufreq_ondemand.c
++++ b/drivers/cpufreq/cpufreq_ondemand.c
+@@ -21,7 +21,7 @@
+ #include "cpufreq_ondemand.h"
+
+ /* On-demand governor macros */
+-#define DEF_FREQUENCY_UP_THRESHOLD (80)
++#define DEF_FREQUENCY_UP_THRESHOLD (63)
+ #define DEF_SAMPLING_DOWN_FACTOR (1)
+ #define MAX_SAMPLING_DOWN_FACTOR (100000)
+ #define MICRO_FREQUENCY_UP_THRESHOLD (95)
+@@ -130,7 +130,7 @@ static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
+ }
+
+ /*
+- * Every sampling_rate, we check, if current idle time is less than 20%
++ * Every sampling_rate, we check, if current idle time is less than 37%
+ * (default), then we try to increase frequency. Else, we adjust the frequency
+ * proportional to load.
+ */
+diff --git a/fs/proc/base.c b/fs/proc/base.c
+index 6a803a0b75df..c75b7be0f94b 100644
+--- a/fs/proc/base.c
++++ b/fs/proc/base.c
+@@ -463,7 +463,7 @@ static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
+ seq_puts(m, "0 0 0\n");
+ else
+ seq_printf(m, "%llu %llu %lu\n",
+- (unsigned long long)task->se.sum_exec_runtime,
++ (unsigned long long)tsk_seruntime(task),
+ (unsigned long long)task->sched_info.run_delay,
+ task->sched_info.pcount);
+
+diff --git a/include/linux/init_task.h b/include/linux/init_task.h
+index 6049baa5b8bc..87355efcc13d 100644
+--- a/include/linux/init_task.h
++++ b/include/linux/init_task.h
+@@ -47,7 +47,11 @@ extern struct cred init_cred;
+ #define INIT_CPU_TIMERS(s)
+ #endif
+
++#ifdef CONFIG_SCHED_PDS
++#define INIT_TASK_COMM "PDS"
++#else
+ #define INIT_TASK_COMM "swapper"
++#endif /* !CONFIG_SCHED_PDS */
+
+ /* Attach to the init_task data structure for proper alignment */
+ #ifdef CONFIG_ARCH_TASK_STRUCT_ON_STACK
+diff --git a/include/linux/jiffies.h b/include/linux/jiffies.h
+index fa928242567d..fa456190e315 100644
+--- a/include/linux/jiffies.h
++++ b/include/linux/jiffies.h
+@@ -171,7 +171,7 @@ static inline u64 get_jiffies_64(void)
+ * Have the 32 bit jiffies value wrap 5 minutes after boot
+ * so jiffies wrap bugs show up earlier.
+ */
+-#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
++#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-10*HZ))
+
+ /*
+ * Change timeval to jiffies, trying to avoid the
+diff --git a/include/linux/sched.h b/include/linux/sched.h
+index 1549584a1538..ec5a3f7af424 100644
+--- a/include/linux/sched.h
++++ b/include/linux/sched.h
+@@ -30,6 +30,7 @@
+ #include <linux/mm_types_task.h>
+ #include <linux/task_io_accounting.h>
+ #include <linux/rseq.h>
++#include <linux/skip_list.h>
+
+ /* task_struct member predeclarations (sorted alphabetically): */
+ struct audit_context;
+@@ -605,9 +606,13 @@ struct task_struct {
+ unsigned int flags;
+ unsigned int ptrace;
+
+-#ifdef CONFIG_SMP
++#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_PDS)
+ struct llist_node wake_entry;
++#endif
++#if defined(CONFIG_SMP) || defined(CONFIG_SCHED_PDS)
+ int on_cpu;
++#endif
++#ifdef CONFIG_SMP
+ #ifdef CONFIG_THREAD_INFO_IN_TASK
+ /* Current CPU: */
+ unsigned int cpu;
+@@ -616,6 +621,7 @@ struct task_struct {
+ unsigned long wakee_flip_decay_ts;
+ struct task_struct *last_wakee;
+
++#ifndef CONFIG_SCHED_PDS
+ /*
+ * recent_used_cpu is initially set as the last CPU used by a task
+ * that wakes affine another task. Waker/wakee relationships can
+@@ -624,6 +630,7 @@ struct task_struct {
+ * used CPU that may be idle.
+ */
+ int recent_used_cpu;
++#endif /* CONFIG_SCHED_PDS */
+ int wake_cpu;
+ #endif
+ int on_rq;
+@@ -633,13 +640,27 @@ struct task_struct {
+ int normal_prio;
+ unsigned int rt_priority;
+
++#ifdef CONFIG_SCHED_PDS
++ int time_slice;
++ u64 deadline;
++ /* skip list level */
++ int sl_level;
++ /* skip list node */
++ struct skiplist_node sl_node;
++ /* 8bits prio and 56bits deadline for quick processing */
++ u64 priodl;
++ u64 last_ran;
++ /* sched_clock time spent running */
++ u64 sched_time;
++#else /* CONFIG_SCHED_PDS */
+ const struct sched_class *sched_class;
+ struct sched_entity se;
+ struct sched_rt_entity rt;
++ struct sched_dl_entity dl;
++#endif
+ #ifdef CONFIG_CGROUP_SCHED
+ struct task_group *sched_task_group;
+ #endif
+- struct sched_dl_entity dl;
+
+ #ifdef CONFIG_PREEMPT_NOTIFIERS
+ /* List of struct preempt_notifier: */
+@@ -1217,6 +1238,29 @@ struct task_struct {
+ */
+ };
+
++#ifdef CONFIG_SCHED_PDS
++void cpu_scaling(int cpu);
++void cpu_nonscaling(int cpu);
++#define tsk_seruntime(t) ((t)->sched_time)
++/* replace the uncertian rt_timeout with 0UL */
++#define tsk_rttimeout(t) (0UL)
++
++#define task_running_idle(p) ((p)->prio == IDLE_PRIO)
++#else /* CFS */
++extern int runqueue_is_locked(int cpu);
++static inline void cpu_scaling(int cpu)
++{
++}
++
++static inline void cpu_nonscaling(int cpu)
++{
++}
++#define tsk_seruntime(t) ((t)->se.sum_exec_runtime)
++#define tsk_rttimeout(t) ((t)->rt.timeout)
++
++#define iso_task(p) (false)
++#endif /* CONFIG_SCHED_PDS */
++
+ static inline struct pid *task_pid(struct task_struct *task)
+ {
+ return task->thread_pid;
+diff --git a/include/linux/sched/deadline.h b/include/linux/sched/deadline.h
+index 0cb034331cbb..eb2d51ef8afa 100644
+--- a/include/linux/sched/deadline.h
++++ b/include/linux/sched/deadline.h
+@@ -1,5 +1,22 @@
+ /* SPDX-License-Identifier: GPL-2.0 */
+
++#ifdef CONFIG_SCHED_PDS
++
++#define __tsk_deadline(p) ((p)->deadline)
++
++static inline int dl_prio(int prio)
++{
++ return 1;
++}
++
++static inline int dl_task(struct task_struct *p)
++{
++ return 1;
++}
++#else
++
++#define __tsk_deadline(p) ((p)->dl.deadline)
++
+ /*
+ * SCHED_DEADLINE tasks has negative priorities, reflecting
+ * the fact that any of them has higher prio than RT and
+@@ -19,6 +36,7 @@ static inline int dl_task(struct task_struct *p)
+ {
+ return dl_prio(p->prio);
+ }
++#endif /* CONFIG_SCHED_PDS */
+
+ static inline bool dl_time_before(u64 a, u64 b)
+ {
+diff --git a/include/linux/sched/nohz.h b/include/linux/sched/nohz.h
+index b36f4cf38111..46bbab702a3b 100644
+--- a/include/linux/sched/nohz.h
++++ b/include/linux/sched/nohz.h
+@@ -6,7 +6,7 @@
+ * This is the interface between the scheduler and nohz/dynticks:
+ */
+
+-#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
++#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) && !defined(CONFIG_SCHED_PDS)
+ extern void cpu_load_update_nohz_start(void);
+ extern void cpu_load_update_nohz_stop(void);
+ #else
+diff --git a/include/linux/sched/prio.h b/include/linux/sched/prio.h
+index 7d64feafc408..fba04bb91492 100644
+--- a/include/linux/sched/prio.h
++++ b/include/linux/sched/prio.h
+@@ -20,7 +20,18 @@
+ */
+
+ #define MAX_USER_RT_PRIO 100
++
++#ifdef CONFIG_SCHED_PDS
++#define ISO_PRIO (MAX_USER_RT_PRIO)
++
++#define MAX_RT_PRIO ((MAX_USER_RT_PRIO) + 1)
++
++#define NORMAL_PRIO (MAX_RT_PRIO)
++#define IDLE_PRIO ((MAX_RT_PRIO) + 1)
++#define PRIO_LIMIT ((IDLE_PRIO) + 1)
++#else /* !CONFIG_SCHED_PDS */
+ #define MAX_RT_PRIO MAX_USER_RT_PRIO
++#endif /* CONFIG_SCHED_PDS */
+
+ #define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
+ #define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)
+diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h
+index e5af028c08b4..a96012e6f15e 100644
+--- a/include/linux/sched/rt.h
++++ b/include/linux/sched/rt.h
+@@ -24,8 +24,10 @@ static inline bool task_is_realtime(struct task_struct *tsk)
+
+ if (policy == SCHED_FIFO || policy == SCHED_RR)
+ return true;
++#ifndef CONFIG_SCHED_PDS
+ if (policy == SCHED_DEADLINE)
+ return true;
++#endif
+ return false;
+ }
+
+diff --git a/include/linux/sched/task.h b/include/linux/sched/task.h
+index 2e97a2227045..8f58bb311c00 100644
+--- a/include/linux/sched/task.h
++++ b/include/linux/sched/task.h
+@@ -82,7 +82,7 @@ extern long kernel_wait4(pid_t, int __user *, int, struct rusage *);
+ extern void free_task(struct task_struct *tsk);
+
+ /* sched_exec is called by processes performing an exec */
+-#ifdef CONFIG_SMP
++#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_PDS)
+ extern void sched_exec(void);
+ #else
+ #define sched_exec() {}
+diff --git a/include/linux/skip_list.h b/include/linux/skip_list.h
+new file mode 100644
+index 000000000000..713fedd8034f
+--- /dev/null
++++ b/include/linux/skip_list.h
+@@ -0,0 +1,177 @@
++/*
++ Copyright (C) 2016 Alfred Chen.
++
++ Code based on Con Kolivas's skip list implementation for BFS, and
++ which is based on example originally by William Pugh.
++
++Skip Lists are a probabilistic alternative to balanced trees, as
++described in the June 1990 issue of CACM and were invented by
++William Pugh in 1987.
++
++A couple of comments about this implementation:
++
++This file only provides a infrastructure of skip list.
++
++skiplist_node is embedded into container data structure, to get rid the
++dependency of kmalloc/kfree operation in scheduler code.
++
++A customized search function should be defined using DEFINE_SKIPLIST_INSERT
++macro and be used for skip list insert operation.
++
++Random Level is also not defined in this file, instead, it should be customized
++implemented and set to node->level then pass to the customized skiplist_insert
++function.
++
++Levels start at zero and go up to (NUM_SKIPLIST_LEVEL -1)
++
++NUM_SKIPLIST_LEVEL in this implementation is 8 instead of origin 16,
++considering that there will be 256 entries to enable the top level when using
++random level p=0.5, and that number is more than enough for a run queue usage
++in a scheduler usage. And it also help to reduce the memory usage of the
++embedded skip list node in task_struct to about 50%.
++
++The insertion routine has been implemented so as to use the
++dirty hack described in the CACM paper: if a random level is
++generated that is more than the current maximum level, the
++current maximum level plus one is used instead.
++
++BFS Notes: In this implementation of skiplists, there are bidirectional
++next/prev pointers and the insert function returns a pointer to the actual
++node the value is stored. The key here is chosen by the scheduler so as to
++sort tasks according to the priority list requirements and is no longer used
++by the scheduler after insertion. The scheduler lookup, however, occurs in
++O(1) time because it is always the first item in the level 0 linked list.
++Since the task struct stores a copy of the node pointer upon skiplist_insert,
++it can also remove it much faster than the original implementation with the
++aid of prev<->next pointer manipulation and no searching.
++*/
++#ifndef _LINUX_SKIP_LIST_H
++#define _LINUX_SKIP_LIST_H
++
++#include <linux/kernel.h>
++
++#define NUM_SKIPLIST_LEVEL (8)
++
++struct skiplist_node {
++ int level; /* Levels in this node */
++ struct skiplist_node *next[NUM_SKIPLIST_LEVEL];
++ struct skiplist_node *prev[NUM_SKIPLIST_LEVEL];
++};
++
++#define SKIPLIST_NODE_INIT(name) { 0,\
++ {&name, &name, &name, &name,\
++ &name, &name, &name, &name},\
++ {&name, &name, &name, &name,\
++ &name, &name, &name, &name},\
++ }
++
++static inline void INIT_SKIPLIST_NODE(struct skiplist_node *node)
++{
++ /* only level 0 ->next matters in skiplist_empty()*/
++ WRITE_ONCE(node->next[0], node);
++}
++
++/**
++ * FULL_INIT_SKIPLIST_NODE -- fully init a skiplist_node, expecially for header
++ * @node: the skip list node to be inited.
++ */
++static inline void FULL_INIT_SKIPLIST_NODE(struct skiplist_node *node)
++{
++ int i;
++
++ node->level = 0;
++ for (i = 0; i < NUM_SKIPLIST_LEVEL; i++) {
++ WRITE_ONCE(node->next[i], node);
++ node->prev[i] = node;
++ }
++}
++
++/**
++ * skiplist_empty - test whether a skip list is empty
++ * @head: the skip list to test.
++ */
++static inline int skiplist_empty(const struct skiplist_node *head)
++{
++ return READ_ONCE(head->next[0]) == head;
++}
++
++/**
++ * skiplist_entry - get the struct for this entry
++ * @ptr: the &struct skiplist_node pointer.
++ * @type: the type of the struct this is embedded in.
++ * @member: the name of the skiplist_node within the struct.
++ */
++#define skiplist_entry(ptr, type, member) \
++ container_of(ptr, type, member)
++
++/**
++ * DEFINE_SKIPLIST_INSERT_FUNC -- macro to define a customized skip list insert
++ * function, which takes two parameters, first one is the header node of the
++ * skip list, second one is the skip list node to be inserted
++ * @func_name: the customized skip list insert function name
++ * @search_func: the search function to be used, which takes two parameters,
++ * 1st one is the itrator of skiplist_node in the list, the 2nd is the skip list
++ * node to be inserted, the function should return true if search should be
++ * continued, otherwise return false.
++ * Returns 1 if @node is inserted as the first item of skip list at level zero,
++ * otherwise 0
++ */
++#define DEFINE_SKIPLIST_INSERT_FUNC(func_name, search_func)\
++static inline int func_name(struct skiplist_node *head, struct skiplist_node *node)\
++{\
++ struct skiplist_node *update[NUM_SKIPLIST_LEVEL];\
++ struct skiplist_node *p, *q;\
++ int k = head->level;\
++\
++ p = head;\
++ do {\
++ while (q = p->next[k], q != head && search_func(q, node))\
++ p = q;\
++ update[k] = p;\
++ } while (--k >= 0);\
++\
++ k = node->level;\
++ if (unlikely(k > head->level)) {\
++ node->level = k = ++head->level;\
++ update[k] = head;\
++ }\
++\
++ do {\
++ p = update[k];\
++ q = p->next[k];\
++ node->next[k] = q;\
++ p->next[k] = node;\
++ node->prev[k] = p;\
++ q->prev[k] = node;\
++ } while (--k >= 0);\
++\
++ return (p == head);\
++}
++
++/**
++ * skiplist_del_init -- delete skip list node from a skip list and reset it's
++ * init state
++ * @head: the header node of the skip list to be deleted from.
++ * @node: the skip list node to be deleted, the caller need to ensure @node is
++ * in skip list which @head represent.
++ * Returns 1 if @node is the first item of skip level at level zero, otherwise 0
++ */
++static inline int
++skiplist_del_init(struct skiplist_node *head, struct skiplist_node *node)
++{
++ int l, m = node->level;
++
++ for (l = 0; l <= m; l++) {
++ node->prev[l]->next[l] = node->next[l];
++ node->next[l]->prev[l] = node->prev[l];
++ }
++ if (m == head->level && m > 0) {
++ while (head->next[m] == head && m > 0)
++ m--;
++ head->level = m;
++ }
++ INIT_SKIPLIST_NODE(node);
++
++ return (node->prev[0] == head);
++}
++#endif /* _LINUX_SKIP_LIST_H */
+diff --git a/include/uapi/linux/sched.h b/include/uapi/linux/sched.h
+index 22627f80063e..ea555021c0fb 100644
+--- a/include/uapi/linux/sched.h
++++ b/include/uapi/linux/sched.h
+@@ -37,7 +37,10 @@
+ #define SCHED_FIFO 1
+ #define SCHED_RR 2
+ #define SCHED_BATCH 3
+-/* SCHED_ISO: reserved but not implemented yet */
++/* SCHED_ISO: Implemented in BFS/MuQSSPDS only */
++#ifdef CONFIG_SCHED_PDS
++#define SCHED_ISO 4
++#endif
+ #define SCHED_IDLE 5
+ #define SCHED_DEADLINE 6
+
+diff --git a/init/Kconfig b/init/Kconfig
+index 4592bf7997c0..6357a0eea78b 100644
+--- a/init/Kconfig
++++ b/init/Kconfig
+@@ -64,6 +64,21 @@ config THREAD_INFO_IN_TASK
+
+ menu "General setup"
+
++config SCHED_PDS
++ bool "PDS-mq cpu scheduler"
++ help
++ The Priority and Deadline based Skip list multiple queue CPU
++ Scheduler for excellent interactivity and responsiveness on the
++ desktop and solid scalability on normal hardware and commodity
++ servers.
++
++ Currently incompatible with the Group CPU scheduler, and RCU TORTURE
++ TEST so these options are disabled.
++
++ Say Y here.
++ default y
++
++
+ config BROKEN
+ bool
+
+@@ -702,6 +717,7 @@ config NUMA_BALANCING
+ depends on ARCH_SUPPORTS_NUMA_BALANCING
+ depends on !ARCH_WANT_NUMA_VARIABLE_LOCALITY
+ depends on SMP && NUMA && MIGRATION
++ depends on !SCHED_PDS
+ help
+ This option adds support for automatic NUMA aware memory/task placement.
+ The mechanism is quite primitive and is based on migrating memory when
+@@ -811,7 +827,7 @@ menuconfig CGROUP_SCHED
+ bandwidth allocation to such task groups. It uses cgroups to group
+ tasks.
+
+-if CGROUP_SCHED
++if CGROUP_SCHED && !SCHED_PDS
+ config FAIR_GROUP_SCHED
+ bool "Group scheduling for SCHED_OTHER"
+ depends on CGROUP_SCHED
+@@ -918,6 +934,7 @@ config CGROUP_DEVICE
+
+ config CGROUP_CPUACCT
+ bool "Simple CPU accounting controller"
++ depends on !SCHED_PDS
+ help
+ Provides a simple controller for monitoring the
+ total CPU consumed by the tasks in a cgroup.
+@@ -1036,6 +1053,7 @@ config CHECKPOINT_RESTORE
+
+ config SCHED_AUTOGROUP
+ bool "Automatic process group scheduling"
++ depends on !SCHED_PDS
+ select CGROUPS
+ select CGROUP_SCHED
+ select FAIR_GROUP_SCHED
+diff --git a/init/init_task.c b/init/init_task.c
+index c70ef656d0f4..051fb66f53b7 100644
+--- a/init/init_task.c
++++ b/init/init_task.c
+@@ -60,6 +60,125 @@ struct task_struct init_task
+ __init_task_data
+ #endif
+ = {
++#ifdef CONFIG_SCHED_PDS
++#ifdef CONFIG_THREAD_INFO_IN_TASK
++ .thread_info = INIT_THREAD_INFO(init_task),
++ .stack_refcount = ATOMIC_INIT(1),
++#endif
++ .state = 0,
++ .stack = init_stack,
++ .usage = ATOMIC_INIT(2),
++ .flags = PF_KTHREAD,
++ .prio = NORMAL_PRIO,
++ .static_prio = MAX_PRIO - 20,
++ .normal_prio = NORMAL_PRIO,
++ .deadline = 0, /* PDS only */
++ .policy = SCHED_NORMAL,
++ .cpus_allowed = CPU_MASK_ALL,
++ .nr_cpus_allowed= NR_CPUS,
++ .mm = NULL,
++ .active_mm = &init_mm,
++ .restart_block = {
++ .fn = do_no_restart_syscall,
++ },
++ .sl_level = 0, /* PDS only */
++ .sl_node = SKIPLIST_NODE_INIT(init_task.sl_node), /* PDS only */
++ .time_slice = HZ, /* PDS only */
++ .tasks = LIST_HEAD_INIT(init_task.tasks),
++#ifdef CONFIG_SMP
++ .pushable_tasks = PLIST_NODE_INIT(init_task.pushable_tasks, MAX_PRIO),
++#endif
++#ifdef CONFIG_CGROUP_SCHED
++ .sched_task_group = &root_task_group,
++#endif
++ .ptraced = LIST_HEAD_INIT(init_task.ptraced),
++ .ptrace_entry = LIST_HEAD_INIT(init_task.ptrace_entry),
++ .real_parent = &init_task,
++ .parent = &init_task,
++ .children = LIST_HEAD_INIT(init_task.children),
++ .sibling = LIST_HEAD_INIT(init_task.sibling),
++ .group_leader = &init_task,
++ RCU_POINTER_INITIALIZER(real_cred, &init_cred),
++ RCU_POINTER_INITIALIZER(cred, &init_cred),
++ .comm = INIT_TASK_COMM,
++ .thread = INIT_THREAD,
++ .fs = &init_fs,
++ .files = &init_files,
++ .signal = &init_signals,
++ .sighand = &init_sighand,
++ .nsproxy = &init_nsproxy,
++ .pending = {
++ .list = LIST_HEAD_INIT(init_task.pending.list),
++ .signal = {{0}}
++ },
++ .blocked = {{0}},
++ .alloc_lock = __SPIN_LOCK_UNLOCKED(init_task.alloc_lock),
++ .journal_info = NULL,
++ INIT_CPU_TIMERS(init_task)
++ .pi_lock = __RAW_SPIN_LOCK_UNLOCKED(init_task.pi_lock),
++ .timer_slack_ns = 50000, /* 50 usec default slack */
++ .thread_pid = &init_struct_pid,
++ .thread_group = LIST_HEAD_INIT(init_task.thread_group),
++ .thread_node = LIST_HEAD_INIT(init_signals.thread_head),
++#ifdef CONFIG_AUDITSYSCALL
++ .loginuid = INVALID_UID,
++ .sessionid = AUDIT_SID_UNSET,
++#endif
++#ifdef CONFIG_PERF_EVENTS
++ .perf_event_mutex = __MUTEX_INITIALIZER(init_task.perf_event_mutex),
++ .perf_event_list = LIST_HEAD_INIT(init_task.perf_event_list),
++#endif
++#ifdef CONFIG_PREEMPT_RCU
++ .rcu_read_lock_nesting = 0,
++ .rcu_read_unlock_special.s = 0,
++ .rcu_node_entry = LIST_HEAD_INIT(init_task.rcu_node_entry),
++ .rcu_blocked_node = NULL,
++#endif
++#ifdef CONFIG_TASKS_RCU
++ .rcu_tasks_holdout = false,
++ .rcu_tasks_holdout_list = LIST_HEAD_INIT(init_task.rcu_tasks_holdout_list),
++ .rcu_tasks_idle_cpu = -1,
++#endif
++#ifdef CONFIG_CPUSETS
++ .mems_allowed_seq = SEQCNT_ZERO(init_task.mems_allowed_seq),
++#endif
++#ifdef CONFIG_RT_MUTEXES
++ .pi_waiters = RB_ROOT_CACHED,
++ .pi_top_task = NULL,
++#endif
++ INIT_PREV_CPUTIME(init_task)
++#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
++ .vtime.seqcount = SEQCNT_ZERO(init_task.vtime_seqcount),
++ .vtime.starttime = 0,
++ .vtime.state = VTIME_SYS,
++#endif
++#ifdef CONFIG_NUMA_BALANCING
++ .numa_preferred_nid = -1,
++ .numa_group = NULL,
++ .numa_faults = NULL,
++#endif
++#ifdef CONFIG_KASAN
++ .kasan_depth = 1,
++#endif
++#ifdef CONFIG_TRACE_IRQFLAGS
++ .softirqs_enabled = 1,
++#endif
++#ifdef CONFIG_LOCKDEP
++ .lockdep_recursion = 0,
++#endif
++#ifdef CONFIG_FUNCTION_GRAPH_TRACER
++ .ret_stack = NULL,
++#endif
++#if defined(CONFIG_TRACING) && defined(CONFIG_PREEMPT)
++ .trace_recursion = 0,
++#endif
++#ifdef CONFIG_LIVEPATCH
++ .patch_state = KLP_UNDEFINED,
++#endif
++#ifdef CONFIG_SECURITY
++ .security = NULL,
++#endif
++#else /* CONFIG_SCHED_PDS */
+ #ifdef CONFIG_THREAD_INFO_IN_TASK
+ .thread_info = INIT_THREAD_INFO(init_task),
+ .stack_refcount = REFCOUNT_INIT(1),
+@@ -180,6 +299,7 @@ struct task_struct init_task
+ #ifdef CONFIG_SECURITY
+ .security = NULL,
+ #endif
++#endif /* CONFIG_SCHED_PDS */
+ };
+ EXPORT_SYMBOL(init_task);
+
+diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
+index 4834c4214e9c..a1f36086b861 100644
+--- a/kernel/cgroup/cpuset.c
++++ b/kernel/cgroup/cpuset.c
+@@ -673,7 +673,7 @@ static int validate_change(struct cpuset *cur, struct cpuset *trial)
+ return ret;
+ }
+
+-#ifdef CONFIG_SMP
++#if defined(CONFIG_SMP) && !defined(CONFIG_SCHED_PDS)
+ /*
+ * Helper routine for generate_sched_domains().
+ * Do cpusets a, b have overlapping effective cpus_allowed masks?
+@@ -989,7 +989,7 @@ static void rebuild_sched_domains_locked(void)
+ out:
+ put_online_cpus();
+ }
+-#else /* !CONFIG_SMP */
++#else /* !CONFIG_SMP || CONFIG_SCHED_PDS */
+ static void rebuild_sched_domains_locked(void)
+ {
+ }
+diff --git a/kernel/delayacct.c b/kernel/delayacct.c
+index 2a12b988c717..dba268ca115f 100644
+--- a/kernel/delayacct.c
++++ b/kernel/delayacct.c
+@@ -115,7 +115,7 @@ int __delayacct_add_tsk(struct taskstats *d, struct task_struct *tsk)
+ */
+ t1 = tsk->sched_info.pcount;
+ t2 = tsk->sched_info.run_delay;
+- t3 = tsk->se.sum_exec_runtime;
++ t3 = tsk_seruntime(tsk);
+
+ d->cpu_count += t1;
+
+diff --git a/kernel/exit.c b/kernel/exit.c
+index 2166c2d92ddc..c4eef2f20036 100644
+--- a/kernel/exit.c
++++ b/kernel/exit.c
+@@ -130,7 +130,7 @@ static void __exit_signal(struct task_struct *tsk)
+ sig->curr_target = next_thread(tsk);
+ }
+
+- add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
++ add_device_randomness((const void*) &tsk_seruntime(tsk),
+ sizeof(unsigned long long));
+
+ /*
+@@ -151,7 +151,7 @@ static void __exit_signal(struct task_struct *tsk)
+ sig->inblock += task_io_get_inblock(tsk);
+ sig->oublock += task_io_get_oublock(tsk);
+ task_io_accounting_add(&sig->ioac, &tsk->ioac);
+- sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
++ sig->sum_sched_runtime += tsk_seruntime(tsk);
+ sig->nr_threads--;
+ __unhash_process(tsk, group_dead);
+ write_sequnlock(&sig->stats_lock);
+diff --git a/kernel/livepatch/transition.c b/kernel/livepatch/transition.c
+index 9c89ae8b337a..cac70077b88c 100644
+--- a/kernel/livepatch/transition.c
++++ b/kernel/livepatch/transition.c
+@@ -316,7 +316,11 @@ static bool klp_try_switch_task(struct task_struct *task)
+ */
+ rq = task_rq_lock(task, &flags);
+
++#ifdef CONFIG_SCHED_PDS
++ if (task_running(task) && task != current) {
++#else
+ if (task_running(rq, task) && task != current) {
++#endif
+ snprintf(err_buf, STACK_ERR_BUF_SIZE,
+ "%s: %s:%d is running\n", __func__, task->comm,
+ task->pid);
+diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
+index 978d63a8261c..4aeb8aec5e88 100644
+--- a/kernel/locking/rtmutex.c
++++ b/kernel/locking/rtmutex.c
+@@ -228,7 +228,7 @@ static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
+ * Only use with rt_mutex_waiter_{less,equal}()
+ */
+ #define task_to_waiter(p) \
+- &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
++ &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = __tsk_deadline(p) }
+
+ static inline int
+ rt_mutex_waiter_less(struct rt_mutex_waiter *left,
+@@ -680,7 +680,7 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task,
+ * the values of the node being removed.
+ */
+ waiter->prio = task->prio;
+- waiter->deadline = task->dl.deadline;
++ waiter->deadline = __tsk_deadline(task);
+
+ rt_mutex_enqueue(lock, waiter);
+
+@@ -954,7 +954,7 @@ static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
+ waiter->task = task;
+ waiter->lock = lock;
+ waiter->prio = task->prio;
+- waiter->deadline = task->dl.deadline;
++ waiter->deadline = __tsk_deadline(task);
+
+ /* Get the top priority waiter on the lock */
+ if (rt_mutex_has_waiters(lock))
+diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
+index 21fb5a5662b5..8ebe4e33fb5f 100644
+--- a/kernel/sched/Makefile
++++ b/kernel/sched/Makefile
+@@ -16,15 +16,21 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
+ CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer
+ endif
+
+-obj-y += core.o loadavg.o clock.o cputime.o
+-obj-y += idle.o fair.o rt.o deadline.o
+-obj-y += wait.o wait_bit.o swait.o completion.o
+-
+-obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o stop_task.o pelt.o
++ifdef CONFIG_SCHED_PDS
++obj-y += pds.o
++else
++obj-y += core.o
++obj-y += fair.o rt.o deadline.o
++obj-$(CONFIG_SMP) += cpudeadline.o topology.o stop_task.o
+ obj-$(CONFIG_SCHED_AUTOGROUP) += autogroup.o
+-obj-$(CONFIG_SCHEDSTATS) += stats.o
+ obj-$(CONFIG_SCHED_DEBUG) += debug.o
+ obj-$(CONFIG_CGROUP_CPUACCT) += cpuacct.o
++endif
++obj-y += loadavg.o clock.o cputime.o
++obj-y += idle.o
++obj-y += wait.o wait_bit.o swait.o completion.o
++obj-$(CONFIG_SMP) += cpupri.o pelt.o
++obj-$(CONFIG_SCHEDSTATS) += stats.o
+ obj-$(CONFIG_CPU_FREQ) += cpufreq.o
+ obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
+ obj-$(CONFIG_MEMBARRIER) += membarrier.o
+diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
+index 3638d2377e3c..1a317fca651b 100644
+--- a/kernel/sched/cpufreq_schedutil.c
++++ b/kernel/sched/cpufreq_schedutil.c
+@@ -175,6 +175,7 @@ static unsigned int get_next_freq(struct sugov_policy *sg_policy,
+ return cpufreq_driver_resolve_freq(policy, freq);
+ }
+
++#ifndef CONFIG_SCHED_PDS
+ /*
+ * This function computes an effective utilization for the given CPU, to be
+ * used for frequency selection given the linear relation: f = u * f_max.
+@@ -282,6 +283,13 @@ static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
+
+ return schedutil_freq_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL);
+ }
++#else /* CONFIG_SCHED_PDS */
++static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
++{
++ sg_cpu->max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
++ return sg_cpu->max;
++}
++#endif
+
+ /**
+ * sugov_iowait_reset() - Reset the IO boost status of a CPU.
+@@ -424,7 +432,9 @@ static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
+ */
+ static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
+ {
++#ifndef CONFIG_SCHED_PDS
+ if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
++#endif
+ sg_policy->need_freq_update = true;
+ }
+
+@@ -665,6 +675,7 @@ static int sugov_kthread_create(struct sugov_policy *sg_policy)
+ }
+
+ ret = sched_setattr_nocheck(thread, &attr);
++
+ if (ret) {
+ kthread_stop(thread);
+ pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
+@@ -897,6 +908,7 @@ static int __init sugov_register(void)
+ fs_initcall(sugov_register);
+
+ #ifdef CONFIG_ENERGY_MODEL
++#ifndef CONFIG_SCHED_PDS
+ extern bool sched_energy_update;
+ extern struct mutex sched_energy_mutex;
+
+@@ -927,4 +939,10 @@ void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
+ }
+
+ }
++#else /* CONFIG_SCHED_PDS */
++void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
++ struct cpufreq_governor *old_gov)
++{
++}
++#endif
+ #endif
+diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
+index ba4a143bdcf3..76a9cbb51f55 100644
+--- a/kernel/sched/cputime.c
++++ b/kernel/sched/cputime.c
+@@ -121,7 +121,12 @@ void account_user_time(struct task_struct *p, u64 cputime)
+ p->utime += cputime;
+ account_group_user_time(p, cputime);
+
++#ifdef CONFIG_SCHED_PDS
++ index = (task_nice(p) > 0 || task_running_idle(p)) ? CPUTIME_NICE :
++ CPUTIME_USER;
++#else
+ index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
++#endif
+
+ /* Add user time to cpustat. */
+ task_group_account_field(p, index, cputime);
+@@ -145,7 +150,11 @@ void account_guest_time(struct task_struct *p, u64 cputime)
+ p->gtime += cputime;
+
+ /* Add guest time to cpustat. */
++#ifdef CONFIG_SCHED_PDS
++ if (task_nice(p) > 0 || task_running_idle(p)) {
++#else
+ if (task_nice(p) > 0) {
++#endif
+ cpustat[CPUTIME_NICE] += cputime;
+ cpustat[CPUTIME_GUEST_NICE] += cputime;
+ } else {
+@@ -268,7 +277,7 @@ static inline u64 account_other_time(u64 max)
+ #ifdef CONFIG_64BIT
+ static inline u64 read_sum_exec_runtime(struct task_struct *t)
+ {
+- return t->se.sum_exec_runtime;
++ return tsk_seruntime(t);
+ }
+ #else
+ static u64 read_sum_exec_runtime(struct task_struct *t)
+@@ -278,7 +287,7 @@ static u64 read_sum_exec_runtime(struct task_struct *t)
+ struct rq *rq;
+
+ rq = task_rq_lock(t, &rf);
+- ns = t->se.sum_exec_runtime;
++ ns = tsk_seruntime(t);
+ task_rq_unlock(rq, t, &rf);
+
+ return ns;
+@@ -662,7 +671,7 @@ void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
+ void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
+ {
+ struct task_cputime cputime = {
+- .sum_exec_runtime = p->se.sum_exec_runtime,
++ .sum_exec_runtime = tsk_seruntime(p),
+ };
+
+ task_cputime(p, &cputime.utime, &cputime.stime);
+diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
+index f5516bae0c1b..fe1d4aeb6d69 100644
+--- a/kernel/sched/idle.c
++++ b/kernel/sched/idle.c
+@@ -353,6 +353,7 @@ void cpu_startup_entry(enum cpuhp_state state)
+ do_idle();
+ }
+
++#ifndef CONFIG_SCHED_PDS
+ /*
+ * idle-task scheduling class.
+ */
+@@ -465,3 +466,4 @@ const struct sched_class idle_sched_class = {
+ .switched_to = switched_to_idle,
+ .update_curr = update_curr_idle,
+ };
++#endif
+diff --git a/kernel/sched/pds.c b/kernel/sched/pds.c
+new file mode 100644
+index 000000000000..80dbb9866e01
+--- /dev/null
++++ b/kernel/sched/pds.c
+@@ -0,0 +1,6554 @@
++/*
++ * kernel/sched/pds.c, was kernel/sched.c
++ *
++ * PDS-mq Core kernel scheduler code and related syscalls
++ *
++ * Copyright (C) 1991-2002 Linus Torvalds
++ *
++ * 2009-08-13 Brainfuck deadline scheduling policy by Con Kolivas deletes
++ * a whole lot of those previous things.
++ * 2017-09-06 Priority and Deadline based Skip list multiple queue kernel
++ * scheduler by Alfred Chen.
++ */
++#include "pds_sched.h"
++
++#include <linux/sched/rt.h>
++
++#include <linux/context_tracking.h>
++#include <linux/compat.h>
++#include <linux/blkdev.h>
++#include <linux/delayacct.h>
++#include <linux/freezer.h>
++#include <linux/init_task.h>
++#include <linux/kprobes.h>
++#include <linux/mmu_context.h>
++#include <linux/nmi.h>
++#include <linux/profile.h>
++#include <linux/rcupdate_wait.h>
++#include <linux/security.h>
++#include <linux/syscalls.h>
++#include <linux/wait_bit.h>
++
++#include <linux/kcov.h>
++
++#include <asm/switch_to.h>
++
++#include "../workqueue_internal.h"
++#include "../smpboot.h"
++
++#include "pelt.h"
++
++#define CREATE_TRACE_POINTS
++#include <trace/events/sched.h>
++
++
++#define rt_prio(prio) ((prio) < MAX_RT_PRIO)
++#define rt_task(p) rt_prio((p)->prio)
++#define rt_policy(policy) ((policy) == SCHED_FIFO || \
++ (policy) == SCHED_RR || \
++ (policy) == SCHED_ISO)
++#define task_has_rt_policy(p) (rt_policy((p)->policy))
++
++#define idle_policy(policy) ((policy) == SCHED_IDLE)
++#define idleprio_task(p) unlikely(idle_policy((p)->policy))
++
++#define STOP_PRIO (MAX_RT_PRIO - 1)
++
++/*
++ * Some helpers for converting to/from various scales. Use shifts to get
++ * approximate multiples of ten for less overhead.
++ */
++#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
++#define JIFFY_NS (1000000000 / HZ)
++#define HALF_JIFFY_NS (1000000000 / HZ / 2)
++#define HALF_JIFFY_US (1000000 / HZ / 2)
++#define MS_TO_NS(TIME) ((TIME) << 20)
++#define MS_TO_US(TIME) ((TIME) << 10)
++#define NS_TO_MS(TIME) ((TIME) >> 20)
++#define NS_TO_US(TIME) ((TIME) >> 10)
++#define US_TO_NS(TIME) ((TIME) << 10)
++
++#define RESCHED_US (100) /* Reschedule if less than this many μs left */
++
++enum {
++ BASE_CPU_AFFINITY_CHK_LEVEL = 1,
++#ifdef CONFIG_SCHED_SMT
++ SMT_CPU_AFFINITY_CHK_LEVEL_SPACE_HOLDER,
++#endif
++#ifdef CONFIG_SCHED_MC
++ MC_CPU_AFFINITY_CHK_LEVEL_SPACE_HOLDER,
++#endif
++ NR_CPU_AFFINITY_CHK_LEVEL
++};
++
++static inline void print_scheduler_version(void)
++{
++ printk(KERN_INFO "pds: PDS-mq CPU Scheduler 0.99o by Alfred Chen.\n");
++}
++
++/*
++ * This is the time all tasks within the same priority round robin.
++ * Value is in ms and set to a minimum of 6ms. Scales with number of cpus.
++ * Tunable via /proc interface.
++ */
++#define SCHED_DEFAULT_RR (4)
++int rr_interval __read_mostly = SCHED_DEFAULT_RR;
++
++static int __init rr_interval_set(char *str)
++{
++ u32 rr;
++
++ pr_info("rr_interval: ");
++ if (kstrtouint(str, 0, &rr)) {
++ pr_cont("using default of %u, unable to parse %s\n",
++ rr_interval, str);
++ return 1;
++ }
++
++ rr_interval = rr;
++ pr_cont("%d\n", rr_interval);
++
++ return 1;
++}
++__setup("rr_interval=", rr_interval_set);
++
++
++static const u64 sched_prio2deadline[NICE_WIDTH] = {
++/* -20 */ 6291456, 6920601, 7612661, 8373927, 9211319,
++/* -15 */ 10132450, 11145695, 12260264, 13486290, 14834919,
++/* -10 */ 16318410, 17950251, 19745276, 21719803, 23891783,
++/* -5 */ 26280961, 28909057, 31799962, 34979958, 38477953,
++/* 0 */ 42325748, 46558322, 51214154, 56335569, 61969125,
++/* 5 */ 68166037, 74982640, 82480904, 90728994, 99801893,
++/* 10 */ 109782082, 120760290, 132836319, 146119950, 160731945,
++/* 15 */ 176805139, 194485652, 213934217, 235327638, 258860401
++};
++
++/**
++ * sched_yield_type - Choose what sort of yield sched_yield will perform.
++ * 0: No yield.
++ * 1: Yield only to better priority/deadline tasks. (default)
++ * 2: Expire timeslice and recalculate deadline.
++ */
++int sched_yield_type __read_mostly = 1;
++
++/*
++ * The quota handed out to tasks of all priority levels when refilling their
++ * time_slice.
++ */
++static inline int timeslice(void)
++{
++ return MS_TO_US(rr_interval);
++}
++
++#ifdef CONFIG_SMP
++enum {
++SCHED_RQ_EMPTY = 0,
++SCHED_RQ_IDLE,
++SCHED_RQ_NORMAL_0,
++SCHED_RQ_NORMAL_1,
++SCHED_RQ_NORMAL_2,
++SCHED_RQ_NORMAL_3,
++SCHED_RQ_NORMAL_4,
++SCHED_RQ_NORMAL_5,
++SCHED_RQ_NORMAL_6,
++SCHED_RQ_NORMAL_7,
++SCHED_RQ_ISO,
++SCHED_RQ_RT,
++NR_SCHED_RQ_QUEUED_LEVEL
++};
++
++static cpumask_t sched_rq_queued_masks[NR_SCHED_RQ_QUEUED_LEVEL]
++____cacheline_aligned_in_smp;
++
++static DECLARE_BITMAP(sched_rq_queued_masks_bitmap, NR_SCHED_RQ_QUEUED_LEVEL)
++____cacheline_aligned_in_smp;
++
++static cpumask_t sched_rq_pending_masks[NR_SCHED_RQ_QUEUED_LEVEL]
++____cacheline_aligned_in_smp;
++
++static DECLARE_BITMAP(sched_rq_pending_masks_bitmap, NR_SCHED_RQ_QUEUED_LEVEL)
++____cacheline_aligned_in_smp;
++
++DEFINE_PER_CPU(cpumask_t [NR_CPU_AFFINITY_CHK_LEVEL], sched_cpu_affinity_chk_masks);
++DEFINE_PER_CPU(cpumask_t *, sched_cpu_llc_start_mask);
++DEFINE_PER_CPU(cpumask_t *, sched_cpu_affinity_chk_end_masks);
++
++#ifdef CONFIG_SCHED_SMT
++DEFINE_PER_CPU(int, sched_sibling_cpu);
++DEFINE_STATIC_KEY_FALSE(sched_smt_present);
++EXPORT_SYMBOL_GPL(sched_smt_present);
++
++static cpumask_t sched_cpu_sg_idle_mask ____cacheline_aligned_in_smp;
++
++#ifdef CONFIG_SMT_NICE
++/*
++ * Preemptible sibling group mask
++ * Which all sibling cpus are running at PRIO_LIMIT or IDLE_PRIO
++ */
++static cpumask_t sched_cpu_psg_mask ____cacheline_aligned_in_smp;
++/*
++ * SMT supressed mask
++ * When a cpu is running task with NORMAL/ISO/RT policy, its sibling cpu
++ * will be supressed to run IDLE priority task.
++ */
++static cpumask_t sched_smt_supressed_mask ____cacheline_aligned_in_smp;
++#endif /* CONFIG_SMT_NICE */
++#endif
++
++static int sched_rq_prio[NR_CPUS] ____cacheline_aligned;
++
++/*
++ * Keep a unique ID per domain (we use the first CPUs number in the cpumask of
++ * the domain), this allows us to quickly tell if two cpus are in the same cache
++ * domain, see cpus_share_cache().
++ */
++DEFINE_PER_CPU(int, sd_llc_id);
++
++int __weak arch_sd_sibling_asym_packing(void)
++{
++ return 0*SD_ASYM_PACKING;
++}
++#else
++struct rq *uprq;
++#endif /* CONFIG_SMP */
++
++static DEFINE_MUTEX(sched_hotcpu_mutex);
++
++DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
++
++#ifndef prepare_arch_switch
++# define prepare_arch_switch(next) do { } while (0)
++#endif
++#ifndef finish_arch_post_lock_switch
++# define finish_arch_post_lock_switch() do { } while (0)
++#endif
++
++/*
++ * Context: p->pi_lock
++ */
++static inline struct rq
++*__task_access_lock(struct task_struct *p, raw_spinlock_t **plock)
++{
++ struct rq *rq;
++ for (;;) {
++ rq = task_rq(p);
++ if (p->on_cpu || task_on_rq_queued(p)) {
++ raw_spin_lock(&rq->lock);
++ if (likely((p->on_cpu || task_on_rq_queued(p))
++ && rq == task_rq(p))) {
++ *plock = &rq->lock;
++ return rq;
++ }
++ raw_spin_unlock(&rq->lock);
++ } else if (task_on_rq_migrating(p)) {
++ do {
++ cpu_relax();
++ } while (unlikely(task_on_rq_migrating(p)));
++ } else {
++ *plock = NULL;
++ return rq;
++ }
++ }
++}
++
++static inline void
++__task_access_unlock(struct task_struct *p, raw_spinlock_t *lock)
++{
++ if (NULL != lock)
++ raw_spin_unlock(lock);
++}
++
++static inline struct rq
++*task_access_lock_irqsave(struct task_struct *p, raw_spinlock_t **plock,
++ unsigned long *flags)
++{
++ struct rq *rq;
++ for (;;) {
++ rq = task_rq(p);
++ if (p->on_cpu || task_on_rq_queued(p)) {
++ raw_spin_lock_irqsave(&rq->lock, *flags);
++ if (likely((p->on_cpu || task_on_rq_queued(p))
++ && rq == task_rq(p))) {
++ *plock = &rq->lock;
++ return rq;
++ }
++ raw_spin_unlock_irqrestore(&rq->lock, *flags);
++ } else if (task_on_rq_migrating(p)) {
++ do {
++ cpu_relax();
++ } while (unlikely(task_on_rq_migrating(p)));
++ } else {
++ raw_spin_lock_irqsave(&p->pi_lock, *flags);
++ if (likely(!p->on_cpu && !p->on_rq &&
++ rq == task_rq(p))) {
++ *plock = &p->pi_lock;
++ return rq;
++ }
++ raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
++ }
++ }
++}
++
++static inline void
++task_access_unlock_irqrestore(struct task_struct *p, raw_spinlock_t *lock,
++ unsigned long *flags)
++{
++ raw_spin_unlock_irqrestore(lock, *flags);
++}
++
++/*
++ * __task_rq_lock - lock the rq @p resides on.
++ */
++struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
++ __acquires(rq->lock)
++{
++ struct rq *rq;
++
++ lockdep_assert_held(&p->pi_lock);
++
++ for (;;) {
++ rq = task_rq(p);
++ raw_spin_lock(&rq->lock);
++ if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
++ return rq;
++ raw_spin_unlock(&rq->lock);
++
++ while (unlikely(task_on_rq_migrating(p)))
++ cpu_relax();
++ }
++}
++
++/*
++ * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
++ */
++struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
++ __acquires(p->pi_lock)
++ __acquires(rq->lock)
++{
++ struct rq *rq;
++
++ for (;;) {
++ raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
++ rq = task_rq(p);
++ raw_spin_lock(&rq->lock);
++ /*
++ * move_queued_task() task_rq_lock()
++ *
++ * ACQUIRE (rq->lock)
++ * [S] ->on_rq = MIGRATING [L] rq = task_rq()
++ * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
++ * [S] ->cpu = new_cpu [L] task_rq()
++ * [L] ->on_rq
++ * RELEASE (rq->lock)
++ *
++ * If we observe the old CPU in task_rq_lock(), the acquire of
++ * the old rq->lock will fully serialize against the stores.
++ *
++ * If we observe the new CPU in task_rq_lock(), the address
++ * dependency headed by '[L] rq = task_rq()' and the acquire
++ * will pair with the WMB to ensure we then also see migrating.
++ */
++ if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
++ return rq;
++ }
++ raw_spin_unlock(&rq->lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
++
++ while (unlikely(task_on_rq_migrating(p)))
++ cpu_relax();
++ }
++}
++
++/*
++ * RQ-clock updating methods:
++ */
++
++static void update_rq_clock_task(struct rq *rq, s64 delta)
++{
++/*
++ * In theory, the compile should just see 0 here, and optimize out the call
++ * to sched_rt_avg_update. But I don't trust it...
++ */
++ s64 __maybe_unused steal = 0, irq_delta = 0;
++
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++ irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
++
++ /*
++ * Since irq_time is only updated on {soft,}irq_exit, we might run into
++ * this case when a previous update_rq_clock() happened inside a
++ * {soft,}irq region.
++ *
++ * When this happens, we stop ->clock_task and only update the
++ * prev_irq_time stamp to account for the part that fit, so that a next
++ * update will consume the rest. This ensures ->clock_task is
++ * monotonic.
++ *
++ * It does however cause some slight miss-attribution of {soft,}irq
++ * time, a more accurate solution would be to update the irq_time using
++ * the current rq->clock timestamp, except that would require using
++ * atomic ops.
++ */
++ if (irq_delta > delta)
++ irq_delta = delta;
++
++ rq->prev_irq_time += irq_delta;
++ delta -= irq_delta;
++#endif
++#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
++ if (static_key_false((&paravirt_steal_rq_enabled))) {
++ steal = paravirt_steal_clock(cpu_of(rq));
++ steal -= rq->prev_steal_time_rq;
++
++ if (unlikely(steal > delta))
++ steal = delta;
++
++ rq->prev_steal_time_rq += steal;
++
++ delta -= steal;
++ }
++#endif
++
++ rq->clock_task += delta;
++
++#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
++ if ((irq_delta + steal))
++ update_irq_load_avg(rq, irq_delta + steal);
++#endif
++}
++
++static inline void update_rq_clock(struct rq *rq)
++{
++ s64 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
++
++ if (unlikely(delta <= 0))
++ return;
++ rq->clock += delta;
++ update_rq_clock_task(rq, delta);
++}
++
++static inline void update_task_priodl(struct task_struct *p)
++{
++ p->priodl = (((u64) (p->prio))<<56) | ((p->deadline)>>8);
++}
++
++/*
++ * Deadline is "now" in niffies + (offset by priority). Setting the deadline
++ * is the key to everything. It distributes CPU fairly amongst tasks of the
++ * same nice value, it proportions CPU according to nice level, it means the
++ * task that last woke up the longest ago has the earliest deadline, thus
++ * ensuring that interactive tasks get low latency on wake up. The CPU
++ * proportion works out to the square of the virtual deadline difference, so
++ * this equation will give nice 19 3% CPU compared to nice 0.
++ */
++static inline u64 task_deadline_diff(const struct task_struct *p)
++{
++ return sched_prio2deadline[TASK_USER_PRIO(p)];
++}
++
++static inline u64 static_deadline_diff(int static_prio)
++{
++ return sched_prio2deadline[USER_PRIO(static_prio)];
++}
++
++/*
++ * The time_slice is only refilled when it is empty and that is when we set a
++ * new deadline for non-rt tasks.
++ */
++static inline void time_slice_expired(struct task_struct *p, struct rq *rq)
++{
++ p->time_slice = timeslice();
++ if (p->prio >= NORMAL_PRIO)
++ p->deadline = rq->clock + task_deadline_diff(p);
++
++ update_task_priodl(p);
++}
++
++static inline struct task_struct *rq_first_queued_task(struct rq *rq)
++{
++ struct skiplist_node *node = rq->sl_header.next[0];
++
++ if (node == &rq->sl_header)
++ return rq->idle;
++
++ return skiplist_entry(node, struct task_struct, sl_node);
++}
++
++static inline struct task_struct *rq_second_queued_task(struct rq *rq)
++{
++ struct skiplist_node *node = rq->sl_header.next[0]->next[0];
++
++ if (node == &rq->sl_header)
++ return rq->idle;
++
++ return skiplist_entry(node, struct task_struct, sl_node);
++}
++
++static inline int is_second_in_rq(struct task_struct *p, struct rq *rq)
++{
++ return (p->sl_node.prev[0]->prev[0] == &rq->sl_header);
++}
++
++static const int task_dl_hash_tbl[] = {
++/* 0 4 8 12 */
++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
++/* 16 20 24 28 */
++ 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 7
++};
++
++static inline int
++task_deadline_level(const struct task_struct *p, const struct rq *rq)
++{
++ u64 delta = (rq->clock + sched_prio2deadline[39] - p->deadline) >> 23;
++
++ delta = min((size_t)delta, ARRAY_SIZE(task_dl_hash_tbl) - 1);
++ return task_dl_hash_tbl[delta];
++}
++
++/*
++ * cmpxchg based fetch_or, macro so it works for different integer types
++ */
++#define fetch_or(ptr, mask) \
++ ({ \
++ typeof(ptr) _ptr = (ptr); \
++ typeof(mask) _mask = (mask); \
++ typeof(*_ptr) _old, _val = *_ptr; \
++ \
++ for (;;) { \
++ _old = cmpxchg(_ptr, _val, _val | _mask); \
++ if (_old == _val) \
++ break; \
++ _val = _old; \
++ } \
++ _old; \
++})
++
++#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
++/*
++ * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
++ * this avoids any races wrt polling state changes and thereby avoids
++ * spurious IPIs.
++ */
++static bool set_nr_and_not_polling(struct task_struct *p)
++{
++ struct thread_info *ti = task_thread_info(p);
++ return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
++}
++
++/*
++ * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
++ *
++ * If this returns true, then the idle task promises to call
++ * sched_ttwu_pending() and reschedule soon.
++ */
++static bool set_nr_if_polling(struct task_struct *p)
++{
++ struct thread_info *ti = task_thread_info(p);
++ typeof(ti->flags) old, val = READ_ONCE(ti->flags);
++
++ for (;;) {
++ if (!(val & _TIF_POLLING_NRFLAG))
++ return false;
++ if (val & _TIF_NEED_RESCHED)
++ return true;
++ old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
++ if (old == val)
++ break;
++ val = old;
++ }
++ return true;
++}
++
++#else
++static bool set_nr_and_not_polling(struct task_struct *p)
++{
++ set_tsk_need_resched(p);
++ return true;
++}
++
++#ifdef CONFIG_SMP
++static bool set_nr_if_polling(struct task_struct *p)
++{
++ return false;
++}
++#endif
++#endif
++
++#ifdef CONFIG_SMP
++#ifdef CONFIG_SMT_NICE
++static void resched_cpu_if_curr_is(int cpu, int priority)
++{
++ struct rq *rq = cpu_rq(cpu);
++
++ rcu_read_lock();
++
++ if (rcu_dereference(rq->curr)->prio != priority)
++ goto out;
++
++ if (set_nr_if_polling(rq->idle)) {
++ trace_sched_wake_idle_without_ipi(cpu);
++ } else {
++ if (!do_raw_spin_trylock(&rq->lock))
++ goto out;
++ spin_acquire(&rq->lock.dep_map, SINGLE_DEPTH_NESTING, 1, _RET_IP_);
++
++ if (priority == rq->curr->prio)
++ smp_send_reschedule(cpu);
++ /* Else CPU is not idle, do nothing here */
++
++ spin_release(&rq->lock.dep_map, 1, _RET_IP_);
++ do_raw_spin_unlock(&rq->lock);
++ }
++
++out:
++ rcu_read_unlock();
++}
++#endif /* CONFIG_SMT_NICE */
++
++static inline bool
++__update_cpumasks_bitmap(int cpu, unsigned long *plevel, unsigned long level,
++ cpumask_t cpumasks[], unsigned long bitmap[])
++{
++ if (*plevel == level)
++ return false;
++
++ cpumask_clear_cpu(cpu, cpumasks + *plevel);
++ if (cpumask_empty(cpumasks + *plevel))
++ clear_bit(*plevel, bitmap);
++ cpumask_set_cpu(cpu, cpumasks + level);
++ set_bit(level, bitmap);
++
++ *plevel = level;
++
++ return true;
++}
++
++static inline int
++task_running_policy_level(const struct task_struct *p, const struct rq *rq)
++{
++ int prio = p->prio;
++
++ if (NORMAL_PRIO == prio)
++ return SCHED_RQ_NORMAL_0 + task_deadline_level(p, rq);
++
++ if (ISO_PRIO == prio)
++ return SCHED_RQ_ISO;
++ if (prio < MAX_RT_PRIO)
++ return SCHED_RQ_RT;
++ return PRIO_LIMIT - prio;
++}
++
++static inline void update_sched_rq_queued_masks_normal(struct rq *rq)
++{
++ struct task_struct *p = rq_first_queued_task(rq);
++
++ if (p->prio != NORMAL_PRIO)
++ return;
++
++ __update_cpumasks_bitmap(cpu_of(rq), &rq->queued_level,
++ task_running_policy_level(p, rq),
++ &sched_rq_queued_masks[0],
++ &sched_rq_queued_masks_bitmap[0]);
++}
++
++#ifdef CONFIG_SMT_NICE
++static inline void update_sched_cpu_psg_mask(const int cpu)
++{
++ cpumask_t tmp;
++
++ cpumask_or(&tmp, &sched_rq_queued_masks[SCHED_RQ_EMPTY],
++ &sched_rq_queued_masks[SCHED_RQ_IDLE]);
++ cpumask_and(&tmp, &tmp, cpu_smt_mask(cpu));
++ if (cpumask_equal(&tmp, cpu_smt_mask(cpu)))
++ cpumask_or(&sched_cpu_psg_mask, &sched_cpu_psg_mask,
++ cpu_smt_mask(cpu));
++ else
++ cpumask_andnot(&sched_cpu_psg_mask, &sched_cpu_psg_mask,
++ cpu_smt_mask(cpu));
++}
++#endif
++
++static inline void update_sched_rq_queued_masks(struct rq *rq)
++{
++ int cpu = cpu_of(rq);
++ struct task_struct *p = rq_first_queued_task(rq);
++ unsigned long level;
++#ifdef CONFIG_SCHED_SMT
++ unsigned long last_level = rq->queued_level;
++#endif
++
++ level = task_running_policy_level(p, rq);
++ sched_rq_prio[cpu] = p->prio;
++
++ if (!__update_cpumasks_bitmap(cpu, &rq->queued_level, level,
++ &sched_rq_queued_masks[0],
++ &sched_rq_queued_masks_bitmap[0]))
++ return;
++
++#ifdef CONFIG_SCHED_SMT
++ if (cpu == per_cpu(sched_sibling_cpu, cpu))
++ return;
++
++ if (SCHED_RQ_EMPTY == last_level) {
++ cpumask_andnot(&sched_cpu_sg_idle_mask, &sched_cpu_sg_idle_mask,
++ cpu_smt_mask(cpu));
++ } else if (SCHED_RQ_EMPTY == level) {
++ cpumask_t tmp;
++
++ cpumask_and(&tmp, cpu_smt_mask(cpu),
++ &sched_rq_queued_masks[SCHED_RQ_EMPTY]);
++ if (cpumask_equal(&tmp, cpu_smt_mask(cpu)))
++ cpumask_or(&sched_cpu_sg_idle_mask, cpu_smt_mask(cpu),
++ &sched_cpu_sg_idle_mask);
++ }
++
++#ifdef CONFIG_SMT_NICE
++ if (level <= SCHED_RQ_IDLE && last_level > SCHED_RQ_IDLE) {
++ cpumask_clear_cpu(per_cpu(sched_sibling_cpu, cpu),
++ &sched_smt_supressed_mask);
++ update_sched_cpu_psg_mask(cpu);
++ resched_cpu_if_curr_is(per_cpu(sched_sibling_cpu, cpu), PRIO_LIMIT);
++ } else if (last_level <= SCHED_RQ_IDLE && level > SCHED_RQ_IDLE) {
++ cpumask_set_cpu(per_cpu(sched_sibling_cpu, cpu),
++ &sched_smt_supressed_mask);
++ update_sched_cpu_psg_mask(cpu);
++ resched_cpu_if_curr_is(per_cpu(sched_sibling_cpu, cpu), IDLE_PRIO);
++ }
++#endif /* CONFIG_SMT_NICE */
++#endif
++}
++
++static inline void update_sched_rq_pending_masks(struct rq *rq)
++{
++ unsigned long level;
++ struct task_struct *p = rq_second_queued_task(rq);
++
++ level = task_running_policy_level(p, rq);
++
++ __update_cpumasks_bitmap(cpu_of(rq), &rq->pending_level, level,
++ &sched_rq_pending_masks[0],
++ &sched_rq_pending_masks_bitmap[0]);
++}
++
++#else /* CONFIG_SMP */
++static inline void update_sched_rq_queued_masks(struct rq *rq) {}
++static inline void update_sched_rq_queued_masks_normal(struct rq *rq) {}
++static inline void update_sched_rq_pending_masks(struct rq *rq) {}
++#endif
++
++#ifdef CONFIG_NO_HZ_FULL
++/*
++ * Tick may be needed by tasks in the runqueue depending on their policy and
++ * requirements. If tick is needed, lets send the target an IPI to kick it out
++ * of nohz mode if necessary.
++ */
++static inline void sched_update_tick_dependency(struct rq *rq)
++{
++ int cpu;
++
++ if (!tick_nohz_full_enabled())
++ return;
++
++ cpu = cpu_of(rq);
++
++ if (!tick_nohz_full_cpu(cpu))
++ return;
++
++ if (rq->nr_running < 2)
++ tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
++ else
++ tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
++}
++#else /* !CONFIG_NO_HZ_FULL */
++static inline void sched_update_tick_dependency(struct rq *rq) { }
++#endif
++
++/*
++ * Removing from the runqueue. Deleting a task from the skip list is done
++ * via the stored node reference in the task struct and does not require a full
++ * look up. Thus it occurs in O(k) time where k is the "level" of the list the
++ * task was stored at - usually < 4, max 16.
++ *
++ * Context: rq->lock
++ */
++static inline void dequeue_task(struct task_struct *p, struct rq *rq, int flags)
++{
++ lockdep_assert_held(&rq->lock);
++
++ WARN_ONCE(task_rq(p) != rq, "pds: dequeue task reside on cpu%d from cpu%d\n",
++ task_cpu(p), cpu_of(rq));
++ if (skiplist_del_init(&rq->sl_header, &p->sl_node)) {
++ update_sched_rq_queued_masks(rq);
++ update_sched_rq_pending_masks(rq);
++ } else if (is_second_in_rq(p, rq))
++ update_sched_rq_pending_masks(rq);
++ rq->nr_running--;
++
++ sched_update_tick_dependency(rq);
++ psi_dequeue(p, flags & DEQUEUE_SLEEP);
++
++ sched_info_dequeued(rq, p);
++}
++
++/*
++ * To determine if it's safe for a task of SCHED_IDLE to actually run as
++ * an idle task, we ensure none of the following conditions are met.
++ */
++static inline bool idleprio_suitable(struct task_struct *p)
++{
++ return (!freezing(p) && !signal_pending(p) &&
++ !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING)));
++}
++
++/*
++ * pds_skiplist_random_level -- Returns a pseudo-random level number for skip
++ * list node which is used in PDS run queue.
++ *
++ * In current implementation, based on testing, the first 8 bits in microseconds
++ * of niffies are suitable for random level population.
++ * find_first_bit() is used to satisfy p = 0.5 between each levels, and there
++ * should be platform hardware supported instruction(known as ctz/clz) to speed
++ * up this function.
++ * The skiplist level for a task is populated when task is created and doesn't
++ * change in task's life time. When task is being inserted into run queue, this
++ * skiplist level is set to task's sl_node->level, the skiplist insert function
++ * may change it based on current level of the skip lsit.
++ */
++static inline int pds_skiplist_random_level(const struct task_struct *p)
++{
++ long unsigned int randseed;
++
++ /*
++ * 1. Some architectures don't have better than microsecond resolution
++ * so mask out ~microseconds as a factor of the random seed for skiplist
++ * insertion.
++ * 2. Use address of task structure pointer as another factor of the
++ * random seed for task burst forking scenario.
++ */
++ randseed = (task_rq(p)->clock ^ (long unsigned int)p) >> 10;
++
++ return find_first_bit(&randseed, NUM_SKIPLIST_LEVEL - 1);
++}
++
++/**
++ * pds_skiplist_task_search -- search function used in PDS run queue skip list
++ * node insert operation.
++ * @it: iterator pointer to the node in the skip list
++ * @node: pointer to the skiplist_node to be inserted
++ *
++ * Returns true if key of @it is less or equal to key value of @node, otherwise
++ * false.
++ */
++static inline bool
++pds_skiplist_task_search(struct skiplist_node *it, struct skiplist_node *node)
++{
++ return (skiplist_entry(it, struct task_struct, sl_node)->priodl <=
++ skiplist_entry(node, struct task_struct, sl_node)->priodl);
++}
++
++/*
++ * Define the skip list insert function for PDS
++ */
++DEFINE_SKIPLIST_INSERT_FUNC(pds_skiplist_insert, pds_skiplist_task_search);
++
++/*
++ * Adding task to the runqueue.
++ *
++ * Context: rq->lock
++ */
++static inline void enqueue_task(struct task_struct *p, struct rq *rq, int flags)
++{
++ lockdep_assert_held(&rq->lock);
++
++ WARN_ONCE(task_rq(p) != rq, "pds: enqueue task reside on cpu%d to cpu%d\n",
++ task_cpu(p), cpu_of(rq));
++
++ p->sl_node.level = p->sl_level;
++ if (pds_skiplist_insert(&rq->sl_header, &p->sl_node)) {
++ update_sched_rq_queued_masks(rq);
++ update_sched_rq_pending_masks(rq);
++ } else if (is_second_in_rq(p, rq))
++ update_sched_rq_pending_masks(rq);
++ rq->nr_running++;
++
++ sched_update_tick_dependency(rq);
++
++ sched_info_queued(rq, p);
++ psi_enqueue(p, flags);
++
++ /*
++ * If in_iowait is set, the code below may not trigger any cpufreq
++ * utilization updates, so do it here explicitly with the IOWAIT flag
++ * passed.
++ */
++ if (p->in_iowait)
++ cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
++}
++
++static inline void requeue_task(struct task_struct *p, struct rq *rq)
++{
++ bool b_first, b_second;
++
++ lockdep_assert_held(&rq->lock);
++
++ WARN_ONCE(task_rq(p) != rq, "pds: cpu[%d] requeue task reside on cpu%d\n",
++ cpu_of(rq), task_cpu(p));
++
++ b_first = skiplist_del_init(&rq->sl_header, &p->sl_node);
++ b_second = is_second_in_rq(p, rq);
++
++ p->sl_node.level = p->sl_level;
++ if (pds_skiplist_insert(&rq->sl_header, &p->sl_node) || b_first) {
++ update_sched_rq_queued_masks(rq);
++ update_sched_rq_pending_masks(rq);
++ } else if (is_second_in_rq(p, rq) || b_second)
++ update_sched_rq_pending_masks(rq);
++}
++
++/*
++ * resched_curr - mark rq's current task 'to be rescheduled now'.
++ *
++ * On UP this means the setting of the need_resched flag, on SMP it
++ * might also involve a cross-CPU call to trigger the scheduler on
++ * the target CPU.
++ */
++void resched_curr(struct rq *rq)
++{
++ struct task_struct *curr = rq->curr;
++ int cpu;
++
++ lockdep_assert_held(&rq->lock);
++
++ if (test_tsk_need_resched(curr))
++ return;
++
++ cpu = cpu_of(rq);
++ if (cpu == smp_processor_id()) {
++ set_tsk_need_resched(curr);
++ set_preempt_need_resched();
++ return;
++ }
++
++ if (set_nr_and_not_polling(curr))
++ smp_send_reschedule(cpu);
++ else
++ trace_sched_wake_idle_without_ipi(cpu);
++}
++
++static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
++{
++ struct task_struct *curr = rq->curr;
++
++ if (curr->prio == PRIO_LIMIT)
++ resched_curr(rq);
++
++ if (task_running_idle(p))
++ return;
++
++ if (p->priodl < curr->priodl)
++ resched_curr(rq);
++}
++
++#ifdef CONFIG_SCHED_HRTICK
++/*
++ * Use HR-timers to deliver accurate preemption points.
++ */
++
++static void hrtick_clear(struct rq *rq)
++{
++ if (hrtimer_active(&rq->hrtick_timer))
++ hrtimer_cancel(&rq->hrtick_timer);
++}
++
++/*
++ * High-resolution timer tick.
++ * Runs from hardirq context with interrupts disabled.
++ */
++static enum hrtimer_restart hrtick(struct hrtimer *timer)
++{
++ struct rq *rq = container_of(timer, struct rq, hrtick_timer);
++ struct task_struct *p;
++
++ WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
++
++ raw_spin_lock(&rq->lock);
++ p = rq->curr;
++ p->time_slice = 0;
++ resched_curr(rq);
++ raw_spin_unlock(&rq->lock);
++
++ return HRTIMER_NORESTART;
++}
++
++/*
++ * Use hrtick when:
++ * - enabled by features
++ * - hrtimer is actually high res
++ */
++static inline int hrtick_enabled(struct rq *rq)
++{
++ /**
++ * PDS doesn't support sched_feat yet
++ if (!sched_feat(HRTICK))
++ return 0;
++ */
++ if (!cpu_active(cpu_of(rq)))
++ return 0;
++ return hrtimer_is_hres_active(&rq->hrtick_timer);
++}
++
++#ifdef CONFIG_SMP
++
++static void __hrtick_restart(struct rq *rq)
++{
++ struct hrtimer *timer = &rq->hrtick_timer;
++
++ hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
++}
++
++/*
++ * called from hardirq (IPI) context
++ */
++static void __hrtick_start(void *arg)
++{
++ struct rq *rq = arg;
++
++ raw_spin_lock(&rq->lock);
++ __hrtick_restart(rq);
++ rq->hrtick_csd_pending = 0;
++ raw_spin_unlock(&rq->lock);
++}
++
++/*
++ * Called to set the hrtick timer state.
++ *
++ * called with rq->lock held and irqs disabled
++ */
++void hrtick_start(struct rq *rq, u64 delay)
++{
++ struct hrtimer *timer = &rq->hrtick_timer;
++ ktime_t time;
++ s64 delta;
++
++ /*
++ * Don't schedule slices shorter than 10000ns, that just
++ * doesn't make sense and can cause timer DoS.
++ */
++ delta = max_t(s64, delay, 10000LL);
++ time = ktime_add_ns(timer->base->get_time(), delta);
++
++ hrtimer_set_expires(timer, time);
++
++ if (rq == this_rq()) {
++ __hrtick_restart(rq);
++ } else if (!rq->hrtick_csd_pending) {
++ smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
++ rq->hrtick_csd_pending = 1;
++ }
++}
++
++#else
++/*
++ * Called to set the hrtick timer state.
++ *
++ * called with rq->lock held and irqs disabled
++ */
++void hrtick_start(struct rq *rq, u64 delay)
++{
++ /*
++ * Don't schedule slices shorter than 10000ns, that just
++ * doesn't make sense. Rely on vruntime for fairness.
++ */
++ delay = max_t(u64, delay, 10000LL);
++ hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
++ HRTIMER_MODE_REL_PINNED);
++}
++#endif /* CONFIG_SMP */
++
++static void hrtick_rq_init(struct rq *rq)
++{
++#ifdef CONFIG_SMP
++ rq->hrtick_csd_pending = 0;
++
++ rq->hrtick_csd.flags = 0;
++ rq->hrtick_csd.func = __hrtick_start;
++ rq->hrtick_csd.info = rq;
++#endif
++
++ hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
++ rq->hrtick_timer.function = hrtick;
++}
++
++static inline int rq_dither(struct rq *rq)
++{
++ if ((rq->clock - rq->last_tick > HALF_JIFFY_NS) || hrtick_enabled(rq))
++ return 0;
++
++ return HALF_JIFFY_NS;
++}
++
++#else /* CONFIG_SCHED_HRTICK */
++static inline int hrtick_enabled(struct rq *rq)
++{
++ return 0;
++}
++
++static inline void hrtick_clear(struct rq *rq)
++{
++}
++
++static inline void hrtick_rq_init(struct rq *rq)
++{
++}
++
++static inline int rq_dither(struct rq *rq)
++{
++ return (rq->clock - rq->last_tick > HALF_JIFFY_NS)? 0:HALF_JIFFY_NS;
++}
++#endif /* CONFIG_SCHED_HRTICK */
++
++static inline int normal_prio(struct task_struct *p)
++{
++ static const int policy_to_prio[] = {
++ NORMAL_PRIO, /* SCHED_NORMAL */
++ 0, /* SCHED_FIFO */
++ 0, /* SCHED_RR */
++ IDLE_PRIO, /* SCHED_BATCH */
++ ISO_PRIO, /* SCHED_ISO */
++ IDLE_PRIO /* SCHED_IDLE */
++ };
++
++ if (task_has_rt_policy(p))
++ return MAX_RT_PRIO - 1 - p->rt_priority;
++ return policy_to_prio[p->policy];
++}
++
++/*
++ * Calculate the current priority, i.e. the priority
++ * taken into account by the scheduler. This value might
++ * be boosted by RT tasks as it will be RT if the task got
++ * RT-boosted. If not then it returns p->normal_prio.
++ */
++static int effective_prio(struct task_struct *p)
++{
++ p->normal_prio = normal_prio(p);
++ /*
++ * If we are RT tasks or we were boosted to RT priority,
++ * keep the priority unchanged. Otherwise, update priority
++ * to the normal priority:
++ */
++ if (!rt_prio(p->prio))
++ return p->normal_prio;
++ return p->prio;
++}
++
++/*
++ * activate_task - move a task to the runqueue.
++ *
++ * Context: rq->lock
++ */
++static void activate_task(struct task_struct *p, struct rq *rq)
++{
++ if (task_contributes_to_load(p))
++ rq->nr_uninterruptible--;
++ enqueue_task(p, rq, ENQUEUE_WAKEUP);
++ p->on_rq = 1;
++ cpufreq_update_this_cpu(rq, 0);
++}
++
++/*
++ * deactivate_task - remove a task from the runqueue.
++ *
++ * Context: rq->lock
++ */
++static inline void deactivate_task(struct task_struct *p, struct rq *rq)
++{
++ if (task_contributes_to_load(p))
++ rq->nr_uninterruptible++;
++ dequeue_task(p, rq, DEQUEUE_SLEEP);
++ p->on_rq = 0;
++ cpufreq_update_this_cpu(rq, 0);
++}
++
++static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
++{
++#ifdef CONFIG_SMP
++ /*
++ * After ->cpu is set up to a new value, task_access_lock(p, ...) can be
++ * successfully executed on another CPU. We must ensure that updates of
++ * per-task data have been completed by this moment.
++ */
++ smp_wmb();
++
++#ifdef CONFIG_THREAD_INFO_IN_TASK
++ WRITE_ONCE(p->cpu, cpu);
++#else
++ WRITE_ONCE(task_thread_info(p)->cpu, cpu);
++#endif
++#endif
++}
++
++#ifdef CONFIG_SMP
++void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
++{
++#ifdef CONFIG_SCHED_DEBUG
++ /*
++ * We should never call set_task_cpu() on a blocked task,
++ * ttwu() will sort out the placement.
++ */
++ WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
++ !p->on_rq);
++#ifdef CONFIG_LOCKDEP
++ /*
++ * The caller should hold either p->pi_lock or rq->lock, when changing
++ * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
++ *
++ * sched_move_task() holds both and thus holding either pins the cgroup,
++ * see task_group().
++ */
++ WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
++ lockdep_is_held(&task_rq(p)->lock)));
++#endif
++ /*
++ * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
++ */
++ WARN_ON_ONCE(!cpu_online(new_cpu));
++#endif
++ if (task_cpu(p) == new_cpu)
++ return;
++ trace_sched_migrate_task(p, new_cpu);
++ rseq_migrate(p);
++ perf_event_task_migrate(p);
++
++ __set_task_cpu(p, new_cpu);
++}
++
++static inline bool is_per_cpu_kthread(struct task_struct *p)
++{
++ return ((p->flags & PF_KTHREAD) && (1 == p->nr_cpus_allowed));
++}
++
++/*
++ * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
++ * __set_cpus_allowed_ptr() and select_fallback_rq().
++ */
++static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
++{
++ if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
++ return false;
++
++ if (is_per_cpu_kthread(p))
++ return cpu_online(cpu);
++
++ return cpu_active(cpu);
++}
++
++/*
++ * This is how migration works:
++ *
++ * 1) we invoke migration_cpu_stop() on the target CPU using
++ * stop_one_cpu().
++ * 2) stopper starts to run (implicitly forcing the migrated thread
++ * off the CPU)
++ * 3) it checks whether the migrated task is still in the wrong runqueue.
++ * 4) if it's in the wrong runqueue then the migration thread removes
++ * it and puts it into the right queue.
++ * 5) stopper completes and stop_one_cpu() returns and the migration
++ * is done.
++ */
++
++/*
++ * detach_task() -- detach the task for the migration specified in @target_cpu
++ */
++static void detach_task(struct rq *rq, struct task_struct *p, int target_cpu)
++{
++ lockdep_assert_held(&rq->lock);
++
++ WRITE_ONCE(p->on_rq ,TASK_ON_RQ_MIGRATING);
++ if (task_contributes_to_load(p))
++ rq->nr_uninterruptible++;
++ dequeue_task(p, rq, 0);
++
++ set_task_cpu(p, target_cpu);
++}
++
++/*
++ * attach_task() -- attach the task detached by detach_task() to its new rq.
++ */
++static void attach_task(struct rq *rq, struct task_struct *p)
++{
++ lockdep_assert_held(&rq->lock);
++
++ BUG_ON(task_rq(p) != rq);
++
++ if (task_contributes_to_load(p))
++ rq->nr_uninterruptible--;
++ enqueue_task(p, rq, 0);
++ p->on_rq = TASK_ON_RQ_QUEUED;
++ cpufreq_update_this_cpu(rq, 0);
++}
++
++/*
++ * move_queued_task - move a queued task to new rq.
++ *
++ * Returns (locked) new rq. Old rq's lock is released.
++ */
++static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int
++ new_cpu)
++{
++ detach_task(rq, p, new_cpu);
++ raw_spin_unlock(&rq->lock);
++
++ rq = cpu_rq(new_cpu);
++
++ raw_spin_lock(&rq->lock);
++ update_rq_clock(rq);
++
++ attach_task(rq, p);
++
++ check_preempt_curr(rq, p);
++
++ return rq;
++}
++
++struct migration_arg {
++ struct task_struct *task;
++ int dest_cpu;
++};
++
++/*
++ * Move (not current) task off this CPU, onto the destination CPU. We're doing
++ * this because either it can't run here any more (set_cpus_allowed()
++ * away from this CPU, or CPU going down), or because we're
++ * attempting to rebalance this task on exec (sched_exec).
++ *
++ * So we race with normal scheduler movements, but that's OK, as long
++ * as the task is no longer on this CPU.
++ */
++static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int
++ dest_cpu)
++{
++ /* Affinity changed (again). */
++ if (!is_cpu_allowed(p, dest_cpu))
++ return rq;
++
++ update_rq_clock(rq);
++ return move_queued_task(rq, p, dest_cpu);
++}
++
++/*
++ * migration_cpu_stop - this will be executed by a highprio stopper thread
++ * and performs thread migration by bumping thread off CPU then
++ * 'pushing' onto another runqueue.
++ */
++static int migration_cpu_stop(void *data)
++{
++ struct migration_arg *arg = data;
++ struct task_struct *p = arg->task;
++ struct rq *rq = this_rq();
++
++ /*
++ * The original target CPU might have gone down and we might
++ * be on another CPU but it doesn't matter.
++ */
++ local_irq_disable();
++
++ raw_spin_lock(&p->pi_lock);
++ raw_spin_lock(&rq->lock);
++ /*
++ * If task_rq(p) != rq, it cannot be migrated here, because we're
++ * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
++ * we're holding p->pi_lock.
++ */
++ if (task_rq(p) == rq)
++ if (task_on_rq_queued(p))
++ rq = __migrate_task(rq, p, arg->dest_cpu);
++ raw_spin_unlock(&rq->lock);
++ raw_spin_unlock(&p->pi_lock);
++
++ local_irq_enable();
++ return 0;
++}
++
++static inline void
++set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
++{
++ cpumask_copy(&p->cpus_allowed, new_mask);
++ p->nr_cpus_allowed = cpumask_weight(new_mask);
++}
++
++void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
++{
++ set_cpus_allowed_common(p, new_mask);
++}
++#endif
++
++/* Enter with rq lock held. We know p is on the local CPU */
++static inline void __set_tsk_resched(struct task_struct *p)
++{
++ set_tsk_need_resched(p);
++ set_preempt_need_resched();
++}
++
++/**
++ * task_curr - is this task currently executing on a CPU?
++ * @p: the task in question.
++ *
++ * Return: 1 if the task is currently executing. 0 otherwise.
++ */
++inline int task_curr(const struct task_struct *p)
++{
++ return cpu_curr(task_cpu(p)) == p;
++}
++
++#ifdef CONFIG_SMP
++/*
++ * wait_task_inactive - wait for a thread to unschedule.
++ *
++ * If @match_state is nonzero, it's the @p->state value just checked and
++ * not expected to change. If it changes, i.e. @p might have woken up,
++ * then return zero. When we succeed in waiting for @p to be off its CPU,
++ * we return a positive number (its total switch count). If a second call
++ * a short while later returns the same number, the caller can be sure that
++ * @p has remained unscheduled the whole time.
++ *
++ * The caller must ensure that the task *will* unschedule sometime soon,
++ * else this function might spin for a *long* time. This function can't
++ * be called with interrupts off, or it may introduce deadlock with
++ * smp_call_function() if an IPI is sent by the same process we are
++ * waiting to become inactive.
++ */
++unsigned long wait_task_inactive(struct task_struct *p, long match_state)
++{
++ unsigned long flags;
++ bool running, on_rq;
++ unsigned long ncsw;
++ struct rq *rq;
++ raw_spinlock_t *lock;
++
++ for (;;) {
++ rq = task_rq(p);
++
++ /*
++ * If the task is actively running on another CPU
++ * still, just relax and busy-wait without holding
++ * any locks.
++ *
++ * NOTE! Since we don't hold any locks, it's not
++ * even sure that "rq" stays as the right runqueue!
++ * But we don't care, since this will return false
++ * if the runqueue has changed and p is actually now
++ * running somewhere else!
++ */
++ while (task_running(p) && p == rq->curr) {
++ if (match_state && unlikely(p->state != match_state))
++ return 0;
++ cpu_relax();
++ }
++
++ /*
++ * Ok, time to look more closely! We need the rq
++ * lock now, to be *sure*. If we're wrong, we'll
++ * just go back and repeat.
++ */
++ task_access_lock_irqsave(p, &lock, &flags);
++ trace_sched_wait_task(p);
++ running = task_running(p);
++ on_rq = p->on_rq;
++ ncsw = 0;
++ if (!match_state || p->state == match_state)
++ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
++ task_access_unlock_irqrestore(p, lock, &flags);
++
++ /*
++ * If it changed from the expected state, bail out now.
++ */
++ if (unlikely(!ncsw))
++ break;
++
++ /*
++ * Was it really running after all now that we
++ * checked with the proper locks actually held?
++ *
++ * Oops. Go back and try again..
++ */
++ if (unlikely(running)) {
++ cpu_relax();
++ continue;
++ }
++
++ /*
++ * It's not enough that it's not actively running,
++ * it must be off the runqueue _entirely_, and not
++ * preempted!
++ *
++ * So if it was still runnable (but just not actively
++ * running right now), it's preempted, and we should
++ * yield - it could be a while.
++ */
++ if (unlikely(on_rq)) {
++ ktime_t to = NSEC_PER_SEC / HZ;
++
++ set_current_state(TASK_UNINTERRUPTIBLE);
++ schedule_hrtimeout(&to, HRTIMER_MODE_REL);
++ continue;
++ }
++
++ /*
++ * Ahh, all good. It wasn't running, and it wasn't
++ * runnable, which means that it will never become
++ * running in the future either. We're all done!
++ */
++ break;
++ }
++
++ return ncsw;
++}
++
++/***
++ * kick_process - kick a running thread to enter/exit the kernel
++ * @p: the to-be-kicked thread
++ *
++ * Cause a process which is running on another CPU to enter
++ * kernel-mode, without any delay. (to get signals handled.)
++ *
++ * NOTE: this function doesn't have to take the runqueue lock,
++ * because all it wants to ensure is that the remote task enters
++ * the kernel. If the IPI races and the task has been migrated
++ * to another CPU then no harm is done and the purpose has been
++ * achieved as well.
++ */
++void kick_process(struct task_struct *p)
++{
++ int cpu;
++
++ preempt_disable();
++ cpu = task_cpu(p);
++ if ((cpu != smp_processor_id()) && task_curr(p))
++ smp_send_reschedule(cpu);
++ preempt_enable();
++}
++EXPORT_SYMBOL_GPL(kick_process);
++
++/*
++ * ->cpus_allowed is protected by both rq->lock and p->pi_lock
++ *
++ * A few notes on cpu_active vs cpu_online:
++ *
++ * - cpu_active must be a subset of cpu_online
++ *
++ * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
++ * see __set_cpus_allowed_ptr(). At this point the newly online
++ * CPU isn't yet part of the sched domains, and balancing will not
++ * see it.
++ *
++ * - on cpu-down we clear cpu_active() to mask the sched domains and
++ * avoid the load balancer to place new tasks on the to be removed
++ * CPU. Existing tasks will remain running there and will be taken
++ * off.
++ *
++ * This means that fallback selection must not select !active CPUs.
++ * And can assume that any active CPU must be online. Conversely
++ * select_task_rq() below may allow selection of !active CPUs in order
++ * to satisfy the above rules.
++ */
++static int select_fallback_rq(int cpu, struct task_struct *p)
++{
++ int nid = cpu_to_node(cpu);
++ const struct cpumask *nodemask = NULL;
++ enum { cpuset, possible, fail } state = cpuset;
++ int dest_cpu;
++
++ /*
++ * If the node that the CPU is on has been offlined, cpu_to_node()
++ * will return -1. There is no CPU on the node, and we should
++ * select the CPU on the other node.
++ */
++ if (nid != -1) {
++ nodemask = cpumask_of_node(nid);
++
++ /* Look for allowed, online CPU in same node. */
++ for_each_cpu(dest_cpu, nodemask) {
++ if (!cpu_active(dest_cpu))
++ continue;
++ if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
++ return dest_cpu;
++ }
++ }
++
++ for (;;) {
++ /* Any allowed, online CPU? */
++ for_each_cpu(dest_cpu, &p->cpus_allowed) {
++ if (!is_cpu_allowed(p, dest_cpu))
++ continue;
++ goto out;
++ }
++
++ /* No more Mr. Nice Guy. */
++ switch (state) {
++ case cpuset:
++ if (IS_ENABLED(CONFIG_CPUSETS)) {
++ cpuset_cpus_allowed_fallback(p);
++ state = possible;
++ break;
++ }
++ /* Fall-through */
++ case possible:
++ do_set_cpus_allowed(p, cpu_possible_mask);
++ state = fail;
++ break;
++
++ case fail:
++ BUG();
++ break;
++ }
++ }
++
++out:
++ if (state != cpuset) {
++ /*
++ * Don't tell them about moving exiting tasks or
++ * kernel threads (both mm NULL), since they never
++ * leave kernel.
++ */
++ if (p->mm && printk_ratelimit()) {
++ printk_deferred("process %d (%s) no longer affine to cpu%d\n",
++ task_pid_nr(p), p->comm, cpu);
++ }
++ }
++
++ return dest_cpu;
++}
++
++static inline int best_mask_cpu(int cpu, cpumask_t *cpumask)
++{
++ cpumask_t *mask;
++
++ if (cpumask_test_cpu(cpu, cpumask))
++ return cpu;
++
++ mask = &(per_cpu(sched_cpu_affinity_chk_masks, cpu)[0]);
++ while ((cpu = cpumask_any_and(cpumask, mask)) >= nr_cpu_ids)
++ mask++;
++
++ return cpu;
++}
++
++/*
++ * task_preemptible_rq - return the rq which the given task can preempt on
++ * @p: task wants to preempt CPU
++ * @only_preempt_low_policy: indicate only preempt rq running low policy than @p
++ */
++static inline int
++task_preemptible_rq_idle(struct task_struct *p, cpumask_t *chk_mask)
++{
++ cpumask_t tmp;
++
++#ifdef CONFIG_SCHED_SMT
++ if (cpumask_and(&tmp, chk_mask, &sched_cpu_sg_idle_mask))
++ return best_mask_cpu(task_cpu(p), &tmp);
++#endif
++
++#ifdef CONFIG_SMT_NICE
++ /* Only ttwu on cpu which is not smt supressed */
++ if (cpumask_andnot(&tmp, chk_mask, &sched_smt_supressed_mask)) {
++ cpumask_t t;
++ if (cpumask_and(&t, &tmp, &sched_rq_queued_masks[SCHED_RQ_EMPTY]))
++ return best_mask_cpu(task_cpu(p), &t);
++ return best_mask_cpu(task_cpu(p), &tmp);
++ }
++#endif
++
++ if (cpumask_and(&tmp, chk_mask, &sched_rq_queued_masks[SCHED_RQ_EMPTY]))
++ return best_mask_cpu(task_cpu(p), &tmp);
++ return best_mask_cpu(task_cpu(p), chk_mask);
++}
++
++static inline int
++task_preemptible_rq(struct task_struct *p, cpumask_t *chk_mask,
++ int preempt_level)
++{
++ cpumask_t tmp;
++ int level;
++
++#ifdef CONFIG_SCHED_SMT
++#ifdef CONFIG_SMT_NICE
++ if (cpumask_and(&tmp, chk_mask, &sched_cpu_psg_mask))
++ return best_mask_cpu(task_cpu(p), &tmp);
++#else
++ if (cpumask_and(&tmp, chk_mask, &sched_cpu_sg_idle_mask))
++ return best_mask_cpu(task_cpu(p), &tmp);
++#endif
++#endif
++
++ level = find_first_bit(sched_rq_queued_masks_bitmap,
++ NR_SCHED_RQ_QUEUED_LEVEL);
++
++ while (level < preempt_level) {
++ if (cpumask_and(&tmp, chk_mask, &sched_rq_queued_masks[level]))
++ return best_mask_cpu(task_cpu(p), &tmp);
++
++ level = find_next_bit(sched_rq_queued_masks_bitmap,
++ NR_SCHED_RQ_QUEUED_LEVEL,
++ level + 1);
++ }
++
++ if (unlikely(SCHED_RQ_RT == level &&
++ level == preempt_level &&
++ cpumask_and(&tmp, chk_mask,
++ &sched_rq_queued_masks[SCHED_RQ_RT]))) {
++ unsigned int cpu;
++
++ for_each_cpu (cpu, &tmp)
++ if (p->prio < sched_rq_prio[cpu])
++ return cpu;
++ }
++
++ return best_mask_cpu(task_cpu(p), chk_mask);
++}
++
++/*
++ * wake flags
++ */
++#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
++#define WF_FORK 0x02 /* child wakeup after fork */
++#define WF_MIGRATED 0x04 /* internal use, task got migrated */
++
++static inline int select_task_rq(struct task_struct *p)
++{
++ cpumask_t chk_mask;
++
++ if (unlikely(!cpumask_and(&chk_mask, &p->cpus_allowed, cpu_online_mask)))
++ return select_fallback_rq(task_cpu(p), p);
++
++ /* Check IDLE tasks suitable to run normal priority */
++ if (idleprio_task(p)) {
++ if (idleprio_suitable(p)) {
++ p->prio = p->normal_prio;
++ update_task_priodl(p);
++ return task_preemptible_rq_idle(p, &chk_mask);
++ }
++ p->prio = NORMAL_PRIO;
++ update_task_priodl(p);
++ }
++
++ return task_preemptible_rq(p, &chk_mask,
++ task_running_policy_level(p, this_rq()));
++}
++#else /* CONFIG_SMP */
++static inline int select_task_rq(struct task_struct *p)
++{
++ return 0;
++}
++#endif /* CONFIG_SMP */
++
++static void
++ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
++{
++ struct rq *rq;
++
++ if (!schedstat_enabled())
++ return;
++
++ rq= this_rq();
++
++#ifdef CONFIG_SMP
++ if (cpu == rq->cpu)
++ __schedstat_inc(rq->ttwu_local);
++ else {
++ /** PDS ToDo:
++ * How to do ttwu_wake_remote
++ */
++ }
++#endif /* CONFIG_SMP */
++
++ __schedstat_inc(rq->ttwu_count);
++}
++
++static inline void ttwu_activate(struct task_struct *p, struct rq *rq)
++{
++ activate_task(p, rq);
++
++ /*
++ * if a worker is waking up, notify workqueue. Note that on PDS, we
++ * don't really know what CPU it will be, so we fake it for
++ * wq_worker_waking_up :/
++ */
++ if (p->flags & PF_WQ_WORKER)
++ wq_worker_waking_up(p, cpu_of(rq));
++}
++
++/*
++ * Mark the task runnable and perform wakeup-preemption.
++ */
++static inline void
++ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
++{
++ p->state = TASK_RUNNING;
++ trace_sched_wakeup(p);
++}
++
++static inline void
++ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
++{
++#ifdef CONFIG_SMP
++ if (p->sched_contributes_to_load)
++ rq->nr_uninterruptible--;
++#endif
++
++ ttwu_activate(p, rq);
++ ttwu_do_wakeup(rq, p, 0);
++}
++
++static int ttwu_remote(struct task_struct *p, int wake_flags)
++{
++ struct rq *rq;
++ raw_spinlock_t *lock;
++ int ret = 0;
++
++ rq = __task_access_lock(p, &lock);
++ if (task_on_rq_queued(p)) {
++ ttwu_do_wakeup(rq, p, wake_flags);
++ ret = 1;
++ }
++ __task_access_unlock(p, lock);
++
++ return ret;
++}
++
++/*
++ * Notes on Program-Order guarantees on SMP systems.
++ *
++ * MIGRATION
++ *
++ * The basic program-order guarantee on SMP systems is that when a task [t]
++ * migrates, all its activity on its old CPU [c0] happens-before any subsequent
++ * execution on its new CPU [c1].
++ *
++ * For migration (of runnable tasks) this is provided by the following means:
++ *
++ * A) UNLOCK of the rq(c0)->lock scheduling out task t
++ * B) migration for t is required to synchronize *both* rq(c0)->lock and
++ * rq(c1)->lock (if not at the same time, then in that order).
++ * C) LOCK of the rq(c1)->lock scheduling in task
++ *
++ * Transitivity guarantees that B happens after A and C after B.
++ * Note: we only require RCpc transitivity.
++ * Note: the CPU doing B need not be c0 or c1
++ *
++ * Example:
++ *
++ * CPU0 CPU1 CPU2
++ *
++ * LOCK rq(0)->lock
++ * sched-out X
++ * sched-in Y
++ * UNLOCK rq(0)->lock
++ *
++ * LOCK rq(0)->lock // orders against CPU0
++ * dequeue X
++ * UNLOCK rq(0)->lock
++ *
++ * LOCK rq(1)->lock
++ * enqueue X
++ * UNLOCK rq(1)->lock
++ *
++ * LOCK rq(1)->lock // orders against CPU2
++ * sched-out Z
++ * sched-in X
++ * UNLOCK rq(1)->lock
++ *
++ *
++ * BLOCKING -- aka. SLEEP + WAKEUP
++ *
++ * For blocking we (obviously) need to provide the same guarantee as for
++ * migration. However the means are completely different as there is no lock
++ * chain to provide order. Instead we do:
++ *
++ * 1) smp_store_release(X->on_cpu, 0)
++ * 2) smp_cond_load_acquire(!X->on_cpu)
++ *
++ * Example:
++ *
++ * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
++ *
++ * LOCK rq(0)->lock LOCK X->pi_lock
++ * dequeue X
++ * sched-out X
++ * smp_store_release(X->on_cpu, 0);
++ *
++ * smp_cond_load_acquire(&X->on_cpu, !VAL);
++ * X->state = WAKING
++ * set_task_cpu(X,2)
++ *
++ * LOCK rq(2)->lock
++ * enqueue X
++ * X->state = RUNNING
++ * UNLOCK rq(2)->lock
++ *
++ * LOCK rq(2)->lock // orders against CPU1
++ * sched-out Z
++ * sched-in X
++ * UNLOCK rq(2)->lock
++ *
++ * UNLOCK X->pi_lock
++ * UNLOCK rq(0)->lock
++ *
++ *
++ * However; for wakeups there is a second guarantee we must provide, namely we
++ * must observe the state that lead to our wakeup. That is, not only must our
++ * task observe its own prior state, it must also observe the stores prior to
++ * its wakeup.
++ *
++ * This means that any means of doing remote wakeups must order the CPU doing
++ * the wakeup against the CPU the task is going to end up running on. This,
++ * however, is already required for the regular Program-Order guarantee above,
++ * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
++ *
++ */
++
++/***
++ * try_to_wake_up - wake up a thread
++ * @p: the thread to be awakened
++ * @state: the mask of task states that can be woken
++ * @wake_flags: wake modifier flags (WF_*)
++ *
++ * Put it on the run-queue if it's not already there. The "current"
++ * thread is always on the run-queue (except when the actual
++ * re-schedule is in progress), and as such you're allowed to do
++ * the simpler "current->state = TASK_RUNNING" to mark yourself
++ * runnable without the overhead of this.
++ *
++ * Return: %true if @p was woken up, %false if it was already running.
++ * or @state didn't match @p's state.
++ */
++static int try_to_wake_up(struct task_struct *p, unsigned int state,
++ int wake_flags)
++{
++ unsigned long flags;
++ struct rq *rq;
++ int cpu, success = 0;
++
++ /*
++ * If we are going to wake up a thread waiting for CONDITION we
++ * need to ensure that CONDITION=1 done by the caller can not be
++ * reordered with p->state check below. This pairs with mb() in
++ * set_current_state() the waiting thread does.
++ */
++ raw_spin_lock_irqsave(&p->pi_lock, flags);
++ smp_mb__after_spinlock();
++ if (!(p->state & state))
++ goto out;
++
++ trace_sched_waking(p);
++
++ /* We're going to change ->state: */
++ success = 1;
++ cpu = task_cpu(p);
++
++ /*
++ * Ensure we load p->on_rq _after_ p->state, otherwise it would
++ * be possible to, falsely, observe p->on_rq == 0 and get stuck
++ * in smp_cond_load_acquire() below.
++ *
++ * sched_ttwu_pending() try_to_wake_up()
++ * STORE p->on_rq = 1 LOAD p->state
++ * UNLOCK rq->lock
++ *
++ * __schedule() (switch to task 'p')
++ * LOCK rq->lock smp_rmb();
++ * smp_mb__after_spinlock();
++ * UNLOCK rq->lock
++ *
++ * [task p]
++ * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
++ *
++ * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
++ * __schedule(). See the comment for smp_mb__after_spinlock().
++ */
++ smp_rmb();
++ if (p->on_rq && ttwu_remote(p, wake_flags))
++ goto stat;
++
++#ifdef CONFIG_SMP
++ /*
++ * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
++ * possible to, falsely, observe p->on_cpu == 0.
++ *
++ * One must be running (->on_cpu == 1) in order to remove oneself
++ * from the runqueue.
++ *
++ * __schedule() (switch to task 'p') try_to_wake_up()
++ * STORE p->on_cpu = 1 LOAD p->on_rq
++ * UNLOCK rq->lock
++ *
++ * __schedule() (put 'p' to sleep)
++ * LOCK rq->lock smp_rmb();
++ * smp_mb__after_spinlock();
++ * STORE p->on_rq = 0 LOAD p->on_cpu
++ *
++ * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
++ * __schedule(). See the comment for smp_mb__after_spinlock().
++ */
++ smp_rmb();
++
++ /*
++ * If the owning (remote) CPU is still in the middle of schedule() with
++ * this task as prev, wait until its done referencing the task.
++ *
++ * Pairs with the smp_store_release() in finish_task().
++ *
++ * This ensures that tasks getting woken will be fully ordered against
++ * their previous state and preserve Program Order.
++ */
++ smp_cond_load_acquire(&p->on_cpu, !VAL);
++
++ p->sched_contributes_to_load = !!task_contributes_to_load(p);
++ p->state = TASK_WAKING;
++
++ if (p->in_iowait) {
++ delayacct_blkio_end(p);
++ atomic_dec(&task_rq(p)->nr_iowait);
++ }
++
++ if (SCHED_ISO == p->policy && ISO_PRIO != p->prio) {
++ p->prio = ISO_PRIO;
++ p->deadline = 0UL;
++ update_task_priodl(p);
++ }
++
++ cpu = select_task_rq(p);
++
++ if (cpu != task_cpu(p)) {
++ wake_flags |= WF_MIGRATED;
++ psi_ttwu_dequeue(p);
++ set_task_cpu(p, cpu);
++ }
++#else /* CONFIG_SMP */
++ if (p->in_iowait) {
++ delayacct_blkio_end(p);
++ atomic_dec(&task_rq(p)->nr_iowait);
++ }
++#endif
++
++ rq = cpu_rq(cpu);
++ raw_spin_lock(&rq->lock);
++
++ update_rq_clock(rq);
++ ttwu_do_activate(rq, p, wake_flags);
++ check_preempt_curr(rq, p);
++
++ raw_spin_unlock(&rq->lock);
++
++stat:
++ ttwu_stat(p, cpu, wake_flags);
++out:
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++ return success;
++}
++
++/**
++ * try_to_wake_up_local - try to wake up a local task with rq lock held
++ * @p: the thread to be awakened
++ *
++ * Put @p on the run-queue if it's not already there. The caller must
++ * ensure that local rq is locked and, @p is not the current task.
++ */
++static void try_to_wake_up_local(struct task_struct *p)
++{
++ struct rq *rq = task_rq(p);
++
++ if (WARN_ON_ONCE(rq != this_rq()) ||
++ WARN_ON_ONCE(p == current))
++ return;
++
++ lockdep_assert_held(&rq->lock);
++
++ if (!raw_spin_trylock(&p->pi_lock)) {
++ /*
++ * This is OK, because current is on_cpu, which avoids it being
++ * picked for load-balance and preemption/IRQs are still
++ * disabled avoiding further scheduler activity on it and we've
++ * not yet picked a replacement task.
++ */
++ raw_spin_unlock(&rq->lock);
++ raw_spin_lock(&p->pi_lock);
++ raw_spin_lock(&rq->lock);
++ }
++
++ if (!(p->state & TASK_NORMAL))
++ goto out;
++
++ trace_sched_waking(p);
++
++ if (!task_on_rq_queued(p)) {
++ if (p->in_iowait) {
++ delayacct_blkio_end(p);
++ atomic_dec(&task_rq(p)->nr_iowait);
++ }
++
++ ttwu_activate(p, rq);
++ }
++
++ ttwu_do_wakeup(rq, p, 0);
++ ttwu_stat(p, smp_processor_id(), 0);
++
++out:
++ raw_spin_unlock(&p->pi_lock);
++}
++
++/**
++ * wake_up_process - Wake up a specific process
++ * @p: The process to be woken up.
++ *
++ * Attempt to wake up the nominated process and move it to the set of runnable
++ * processes.
++ *
++ * Return: 1 if the process was woken up, 0 if it was already running.
++ *
++ * This function executes a full memory barrier before accessing the task state.
++ */
++int wake_up_process(struct task_struct *p)
++{
++ return try_to_wake_up(p, TASK_NORMAL, 0);
++}
++EXPORT_SYMBOL(wake_up_process);
++
++int wake_up_state(struct task_struct *p, unsigned int state)
++{
++ return try_to_wake_up(p, state, 0);
++}
++
++/*
++ * Perform scheduler related setup for a newly forked process p.
++ * p is forked by current.
++ */
++int sched_fork(unsigned long __maybe_unused clone_flags, struct task_struct *p)
++{
++ unsigned long flags;
++ int cpu = get_cpu();
++ struct rq *rq = this_rq();
++
++#ifdef CONFIG_PREEMPT_NOTIFIERS
++ INIT_HLIST_HEAD(&p->preempt_notifiers);
++#endif
++ /* Should be reset in fork.c but done here for ease of PDS patching */
++ p->on_cpu =
++ p->on_rq =
++ p->utime =
++ p->stime =
++ p->sched_time = 0;
++
++ p->sl_level = pds_skiplist_random_level(p);
++ INIT_SKIPLIST_NODE(&p->sl_node);
++
++#ifdef CONFIG_COMPACTION
++ p->capture_control = NULL;
++#endif
++
++ /*
++ * We mark the process as NEW here. This guarantees that
++ * nobody will actually run it, and a signal or other external
++ * event cannot wake it up and insert it on the runqueue either.
++ */
++ p->state = TASK_NEW;
++
++ /*
++ * Make sure we do not leak PI boosting priority to the child.
++ */
++ p->prio = current->normal_prio;
++
++ /*
++ * Revert to default priority/policy on fork if requested.
++ */
++ if (unlikely(p->sched_reset_on_fork)) {
++ if (task_has_rt_policy(p)) {
++ p->policy = SCHED_NORMAL;
++ p->static_prio = NICE_TO_PRIO(0);
++ p->rt_priority = 0;
++ } else if (PRIO_TO_NICE(p->static_prio) < 0)
++ p->static_prio = NICE_TO_PRIO(0);
++
++ p->prio = p->normal_prio = normal_prio(p);
++
++ /*
++ * We don't need the reset flag anymore after the fork. It has
++ * fulfilled its duty:
++ */
++ p->sched_reset_on_fork = 0;
++ }
++
++ /*
++ * Share the timeslice between parent and child, thus the
++ * total amount of pending timeslices in the system doesn't change,
++ * resulting in more scheduling fairness.
++ */
++ raw_spin_lock_irqsave(&rq->lock, flags);
++ rq->curr->time_slice /= 2;
++ p->time_slice = rq->curr->time_slice;
++#ifdef CONFIG_SCHED_HRTICK
++ hrtick_start(rq, US_TO_NS(rq->curr->time_slice));
++#endif
++
++ if (p->time_slice < RESCHED_US) {
++ update_rq_clock(rq);
++ time_slice_expired(p, rq);
++ resched_curr(rq);
++ } else
++ update_task_priodl(p);
++ raw_spin_unlock_irqrestore(&rq->lock, flags);
++
++ /*
++ * The child is not yet in the pid-hash so no cgroup attach races,
++ * and the cgroup is pinned to this child due to cgroup_fork()
++ * is ran before sched_fork().
++ *
++ * Silence PROVE_RCU.
++ */
++ raw_spin_lock_irqsave(&p->pi_lock, flags);
++ /*
++ * We're setting the CPU for the first time, we don't migrate,
++ * so use __set_task_cpu().
++ */
++ __set_task_cpu(p, cpu);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++#ifdef CONFIG_SCHED_INFO
++ if (unlikely(sched_info_on()))
++ memset(&p->sched_info, 0, sizeof(p->sched_info));
++#endif
++ init_task_preempt_count(p);
++
++ put_cpu();
++ return 0;
++}
++
++#ifdef CONFIG_SCHEDSTATS
++
++DEFINE_STATIC_KEY_FALSE(sched_schedstats);
++static bool __initdata __sched_schedstats = false;
++
++static void set_schedstats(bool enabled)
++{
++ if (enabled)
++ static_branch_enable(&sched_schedstats);
++ else
++ static_branch_disable(&sched_schedstats);
++}
++
++void force_schedstat_enabled(void)
++{
++ if (!schedstat_enabled()) {
++ pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
++ static_branch_enable(&sched_schedstats);
++ }
++}
++
++static int __init setup_schedstats(char *str)
++{
++ int ret = 0;
++ if (!str)
++ goto out;
++
++ /*
++ * This code is called before jump labels have been set up, so we can't
++ * change the static branch directly just yet. Instead set a temporary
++ * variable so init_schedstats() can do it later.
++ */
++ if (!strcmp(str, "enable")) {
++ __sched_schedstats = true;
++ ret = 1;
++ } else if (!strcmp(str, "disable")) {
++ __sched_schedstats = false;
++ ret = 1;
++ }
++out:
++ if (!ret)
++ pr_warn("Unable to parse schedstats=\n");
++
++ return ret;
++}
++__setup("schedstats=", setup_schedstats);
++
++static void __init init_schedstats(void)
++{
++ set_schedstats(__sched_schedstats);
++}
++
++#ifdef CONFIG_PROC_SYSCTL
++int sysctl_schedstats(struct ctl_table *table, int write,
++ void __user *buffer, size_t *lenp, loff_t *ppos)
++{
++ struct ctl_table t;
++ int err;
++ int state = static_branch_likely(&sched_schedstats);
++
++ if (write && !capable(CAP_SYS_ADMIN))
++ return -EPERM;
++
++ t = *table;
++ t.data = &state;
++ err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
++ if (err < 0)
++ return err;
++ if (write)
++ set_schedstats(state);
++ return err;
++}
++#endif /* CONFIG_PROC_SYSCTL */
++#else /* !CONFIG_SCHEDSTATS */
++static inline void init_schedstats(void) {}
++#endif /* CONFIG_SCHEDSTATS */
++
++/*
++ * wake_up_new_task - wake up a newly created task for the first time.
++ *
++ * This function will do some initial scheduler statistics housekeeping
++ * that must be done for every newly created context, then puts the task
++ * on the runqueue and wakes it.
++ */
++void wake_up_new_task(struct task_struct *p)
++{
++ unsigned long flags;
++ struct rq *rq;
++
++ raw_spin_lock_irqsave(&p->pi_lock, flags);
++
++ p->state = TASK_RUNNING;
++
++ rq = cpu_rq(select_task_rq(p));
++#ifdef CONFIG_SMP
++ /*
++ * Fork balancing, do it here and not earlier because:
++ * - cpus_allowed can change in the fork path
++ * - any previously selected CPU might disappear through hotplug
++ * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
++ * as we're not fully set-up yet.
++ */
++ __set_task_cpu(p, cpu_of(rq));
++#endif
++
++ raw_spin_lock(&rq->lock);
++
++ update_rq_clock(rq);
++ activate_task(p, rq);
++ trace_sched_wakeup_new(p);
++ check_preempt_curr(rq, p);
++
++ raw_spin_unlock(&rq->lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++}
++
++#ifdef CONFIG_PREEMPT_NOTIFIERS
++
++static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
++
++void preempt_notifier_inc(void)
++{
++ static_branch_inc(&preempt_notifier_key);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_inc);
++
++void preempt_notifier_dec(void)
++{
++ static_branch_dec(&preempt_notifier_key);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_dec);
++
++/**
++ * preempt_notifier_register - tell me when current is being preempted & rescheduled
++ * @notifier: notifier struct to register
++ */
++void preempt_notifier_register(struct preempt_notifier *notifier)
++{
++ if (!static_branch_unlikely(&preempt_notifier_key))
++ WARN(1, "registering preempt_notifier while notifiers disabled\n");
++
++ hlist_add_head(&notifier->link, &current->preempt_notifiers);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_register);
++
++/**
++ * preempt_notifier_unregister - no longer interested in preemption notifications
++ * @notifier: notifier struct to unregister
++ *
++ * This is *not* safe to call from within a preemption notifier.
++ */
++void preempt_notifier_unregister(struct preempt_notifier *notifier)
++{
++ hlist_del(&notifier->link);
++}
++EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
++
++static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++ struct preempt_notifier *notifier;
++
++ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
++ notifier->ops->sched_in(notifier, raw_smp_processor_id());
++}
++
++static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++ if (static_branch_unlikely(&preempt_notifier_key))
++ __fire_sched_in_preempt_notifiers(curr);
++}
++
++static void
++__fire_sched_out_preempt_notifiers(struct task_struct *curr,
++ struct task_struct *next)
++{
++ struct preempt_notifier *notifier;
++
++ hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
++ notifier->ops->sched_out(notifier, next);
++}
++
++static __always_inline void
++fire_sched_out_preempt_notifiers(struct task_struct *curr,
++ struct task_struct *next)
++{
++ if (static_branch_unlikely(&preempt_notifier_key))
++ __fire_sched_out_preempt_notifiers(curr, next);
++}
++
++#else /* !CONFIG_PREEMPT_NOTIFIERS */
++
++static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
++{
++}
++
++static inline void
++fire_sched_out_preempt_notifiers(struct task_struct *curr,
++ struct task_struct *next)
++{
++}
++
++#endif /* CONFIG_PREEMPT_NOTIFIERS */
++
++static inline void prepare_task(struct task_struct *next)
++{
++ /*
++ * Claim the task as running, we do this before switching to it
++ * such that any running task will have this set.
++ */
++ next->on_cpu = 1;
++}
++
++static inline void finish_task(struct task_struct *prev)
++{
++#ifdef CONFIG_SMP
++ /*
++ * After ->on_cpu is cleared, the task can be moved to a different CPU.
++ * We must ensure this doesn't happen until the switch is completely
++ * finished.
++ *
++ * In particular, the load of prev->state in finish_task_switch() must
++ * happen before this.
++ *
++ * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
++ */
++ smp_store_release(&prev->on_cpu, 0);
++#else
++ prev->on_cpu = 0;
++#endif
++}
++
++static inline void
++prepare_lock_switch(struct rq *rq, struct task_struct *next)
++{
++ /*
++ * Since the runqueue lock will be released by the next
++ * task (which is an invalid locking op but in the case
++ * of the scheduler it's an obvious special-case), so we
++ * do an early lockdep release here:
++ */
++ spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
++#ifdef CONFIG_DEBUG_SPINLOCK
++ /* this is a valid case when another task releases the spinlock */
++ rq->lock.owner = next;
++#endif
++}
++
++static inline void finish_lock_switch(struct rq *rq)
++{
++ /*
++ * If we are tracking spinlock dependencies then we have to
++ * fix up the runqueue lock - which gets 'carried over' from
++ * prev into current:
++ */
++ spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
++ raw_spin_unlock_irq(&rq->lock);
++}
++
++/**
++ * prepare_task_switch - prepare to switch tasks
++ * @rq: the runqueue preparing to switch
++ * @next: the task we are going to switch to.
++ *
++ * This is called with the rq lock held and interrupts off. It must
++ * be paired with a subsequent finish_task_switch after the context
++ * switch.
++ *
++ * prepare_task_switch sets up locking and calls architecture specific
++ * hooks.
++ */
++static inline void
++prepare_task_switch(struct rq *rq, struct task_struct *prev,
++ struct task_struct *next)
++{
++ kcov_prepare_switch(prev);
++ sched_info_switch(rq, prev, next);
++ perf_event_task_sched_out(prev, next);
++ rseq_preempt(prev);
++ fire_sched_out_preempt_notifiers(prev, next);
++ prepare_task(next);
++ prepare_arch_switch(next);
++}
++
++/**
++ * finish_task_switch - clean up after a task-switch
++ * @rq: runqueue associated with task-switch
++ * @prev: the thread we just switched away from.
++ *
++ * finish_task_switch must be called after the context switch, paired
++ * with a prepare_task_switch call before the context switch.
++ * finish_task_switch will reconcile locking set up by prepare_task_switch,
++ * and do any other architecture-specific cleanup actions.
++ *
++ * Note that we may have delayed dropping an mm in context_switch(). If
++ * so, we finish that here outside of the runqueue lock. (Doing it
++ * with the lock held can cause deadlocks; see schedule() for
++ * details.)
++ *
++ * The context switch have flipped the stack from under us and restored the
++ * local variables which were saved when this task called schedule() in the
++ * past. prev == current is still correct but we need to recalculate this_rq
++ * because prev may have moved to another CPU.
++ */
++static struct rq *finish_task_switch(struct task_struct *prev)
++ __releases(rq->lock)
++{
++ struct rq *rq = this_rq();
++ struct mm_struct *mm = rq->prev_mm;
++ long prev_state;
++
++ /*
++ * The previous task will have left us with a preempt_count of 2
++ * because it left us after:
++ *
++ * schedule()
++ * preempt_disable(); // 1
++ * __schedule()
++ * raw_spin_lock_irq(&rq->lock) // 2
++ *
++ * Also, see FORK_PREEMPT_COUNT.
++ */
++ if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
++ "corrupted preempt_count: %s/%d/0x%x\n",
++ current->comm, current->pid, preempt_count()))
++ preempt_count_set(FORK_PREEMPT_COUNT);
++
++ rq->prev_mm = NULL;
++
++ /*
++ * A task struct has one reference for the use as "current".
++ * If a task dies, then it sets TASK_DEAD in tsk->state and calls
++ * schedule one last time. The schedule call will never return, and
++ * the scheduled task must drop that reference.
++ *
++ * We must observe prev->state before clearing prev->on_cpu (in
++ * finish_task), otherwise a concurrent wakeup can get prev
++ * running on another CPU and we could rave with its RUNNING -> DEAD
++ * transition, resulting in a double drop.
++ */
++ prev_state = prev->state;
++ vtime_task_switch(prev);
++ perf_event_task_sched_in(prev, current);
++ finish_task(prev);
++ finish_lock_switch(rq);
++ finish_arch_post_lock_switch();
++ kcov_finish_switch(current);
++
++ fire_sched_in_preempt_notifiers(current);
++ /*
++ * When switching through a kernel thread, the loop in
++ * membarrier_{private,global}_expedited() may have observed that
++ * kernel thread and not issued an IPI. It is therefore possible to
++ * schedule between user->kernel->user threads without passing though
++ * switch_mm(). Membarrier requires a barrier after storing to
++ * rq->curr, before returning to userspace, so provide them here:
++ *
++ * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
++ * provided by mmdrop(),
++ * - a sync_core for SYNC_CORE.
++ */
++ if (mm) {
++ membarrier_mm_sync_core_before_usermode(mm);
++ mmdrop(mm);
++ }
++ if (unlikely(prev_state == TASK_DEAD)) {
++ /*
++ * Remove function-return probe instances associated with this
++ * task and put them back on the free list.
++ */
++ kprobe_flush_task(prev);
++
++ /* Task is done with its stack. */
++ put_task_stack(prev);
++
++ put_task_struct(prev);
++ }
++
++ tick_nohz_task_switch();
++ return rq;
++}
++
++/**
++ * schedule_tail - first thing a freshly forked thread must call.
++ * @prev: the thread we just switched away from.
++ */
++asmlinkage __visible void schedule_tail(struct task_struct *prev)
++ __releases(rq->lock)
++{
++ struct rq *rq;
++
++ /*
++ * New tasks start with FORK_PREEMPT_COUNT, see there and
++ * finish_task_switch() for details.
++ *
++ * finish_task_switch() will drop rq->lock() and lower preempt_count
++ * and the preempt_enable() will end up enabling preemption (on
++ * PREEMPT_COUNT kernels).
++ */
++
++ rq = finish_task_switch(prev);
++ preempt_enable();
++
++ if (current->set_child_tid)
++ put_user(task_pid_vnr(current), current->set_child_tid);
++
++ calculate_sigpending();
++}
++
++/*
++ * context_switch - switch to the new MM and the new thread's register state.
++ */
++static __always_inline struct rq *
++context_switch(struct rq *rq, struct task_struct *prev,
++ struct task_struct *next)
++{
++ struct mm_struct *mm, *oldmm;
++
++ prepare_task_switch(rq, prev, next);
++
++ mm = next->mm;
++ oldmm = prev->active_mm;
++ /*
++ * For paravirt, this is coupled with an exit in switch_to to
++ * combine the page table reload and the switch backend into
++ * one hypercall.
++ */
++ arch_start_context_switch(prev);
++
++ /*
++ * If mm is non-NULL, we pass through switch_mm(). If mm is
++ * NULL, we will pass through mmdrop() in finish_task_switch().
++ * Both of these contain the full memory barrier required by
++ * membarrier after storing to rq->curr, before returning to
++ * user-space.
++ */
++ if (!mm) {
++ next->active_mm = oldmm;
++ mmgrab(oldmm);
++ enter_lazy_tlb(oldmm, next);
++ } else
++ switch_mm_irqs_off(oldmm, mm, next);
++
++ if (!prev->mm) {
++ prev->active_mm = NULL;
++ rq->prev_mm = oldmm;
++ }
++
++ prepare_lock_switch(rq, next);
++
++ /* Here we just switch the register state and the stack. */
++ switch_to(prev, next, prev);
++ barrier();
++
++ return finish_task_switch(prev);
++}
++
++/*
++ * nr_running, nr_uninterruptible and nr_context_switches:
++ *
++ * externally visible scheduler statistics: current number of runnable
++ * threads, total number of context switches performed since bootup.
++ */
++unsigned long nr_running(void)
++{
++ unsigned long i, sum = 0;
++
++ for_each_online_cpu(i)
++ sum += cpu_rq(i)->nr_running;
++
++ return sum;
++}
++
++/*
++ * Check if only the current task is running on the CPU.
++ *
++ * Caution: this function does not check that the caller has disabled
++ * preemption, thus the result might have a time-of-check-to-time-of-use
++ * race. The caller is responsible to use it correctly, for example:
++ *
++ * - from a non-preemptible section (of course)
++ *
++ * - from a thread that is bound to a single CPU
++ *
++ * - in a loop with very short iterations (e.g. a polling loop)
++ */
++bool single_task_running(void)
++{
++ return raw_rq()->nr_running == 1;
++}
++EXPORT_SYMBOL(single_task_running);
++
++unsigned long long nr_context_switches(void)
++{
++ int i;
++ unsigned long long sum = 0;
++
++ for_each_possible_cpu(i)
++ sum += cpu_rq(i)->nr_switches;
++
++ return sum;
++}
++
++/*
++ * Consumers of these two interfaces, like for example the cpuidle menu
++ * governor, are using nonsensical data. Preferring shallow idle state selection
++ * for a CPU that has IO-wait which might not even end up running the task when
++ * it does become runnable.
++ */
++
++unsigned long nr_iowait_cpu(int cpu)
++{
++ return atomic_read(&cpu_rq(cpu)->nr_iowait);
++}
++
++/*
++ * IO-wait accounting, and how its mostly bollocks (on SMP).
++ *
++ * The idea behind IO-wait account is to account the idle time that we could
++ * have spend running if it were not for IO. That is, if we were to improve the
++ * storage performance, we'd have a proportional reduction in IO-wait time.
++ *
++ * This all works nicely on UP, where, when a task blocks on IO, we account
++ * idle time as IO-wait, because if the storage were faster, it could've been
++ * running and we'd not be idle.
++ *
++ * This has been extended to SMP, by doing the same for each CPU. This however
++ * is broken.
++ *
++ * Imagine for instance the case where two tasks block on one CPU, only the one
++ * CPU will have IO-wait accounted, while the other has regular idle. Even
++ * though, if the storage were faster, both could've ran at the same time,
++ * utilising both CPUs.
++ *
++ * This means, that when looking globally, the current IO-wait accounting on
++ * SMP is a lower bound, by reason of under accounting.
++ *
++ * Worse, since the numbers are provided per CPU, they are sometimes
++ * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
++ * associated with any one particular CPU, it can wake to another CPU than it
++ * blocked on. This means the per CPU IO-wait number is meaningless.
++ *
++ * Task CPU affinities can make all that even more 'interesting'.
++ */
++
++unsigned long nr_iowait(void)
++{
++ unsigned long i, sum = 0;
++
++ for_each_possible_cpu(i)
++ sum += nr_iowait_cpu(i);
++
++ return sum;
++}
++
++DEFINE_PER_CPU(struct kernel_stat, kstat);
++DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
++
++EXPORT_PER_CPU_SYMBOL(kstat);
++EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
++
++static inline void pds_update_curr(struct rq *rq, struct task_struct *p)
++{
++ s64 ns = rq->clock_task - p->last_ran;
++
++ p->sched_time += ns;
++ account_group_exec_runtime(p, ns);
++
++ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
++ p->time_slice -= NS_TO_US(ns);
++ p->last_ran = rq->clock_task;
++}
++
++/*
++ * Return accounted runtime for the task.
++ * Return separately the current's pending runtime that have not been
++ * accounted yet.
++ */
++unsigned long long task_sched_runtime(struct task_struct *p)
++{
++ unsigned long flags;
++ struct rq *rq;
++ raw_spinlock_t *lock;
++ u64 ns;
++
++#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
++ /*
++ * 64-bit doesn't need locks to atomically read a 64-bit value.
++ * So we have a optimization chance when the task's delta_exec is 0.
++ * Reading ->on_cpu is racy, but this is ok.
++ *
++ * If we race with it leaving CPU, we'll take a lock. So we're correct.
++ * If we race with it entering CPU, unaccounted time is 0. This is
++ * indistinguishable from the read occurring a few cycles earlier.
++ * If we see ->on_cpu without ->on_rq, the task is leaving, and has
++ * been accounted, so we're correct here as well.
++ */
++ if (!p->on_cpu || !task_on_rq_queued(p))
++ return tsk_seruntime(p);
++#endif
++
++ rq = task_access_lock_irqsave(p, &lock, &flags);
++ /*
++ * Must be ->curr _and_ ->on_rq. If dequeued, we would
++ * project cycles that may never be accounted to this
++ * thread, breaking clock_gettime().
++ */
++ if (p == rq->curr && task_on_rq_queued(p)) {
++ update_rq_clock(rq);
++ pds_update_curr(rq, p);
++ }
++ ns = tsk_seruntime(p);
++ task_access_unlock_irqrestore(p, lock, &flags);
++
++ return ns;
++}
++
++/* This manages tasks that have run out of timeslice during a scheduler_tick */
++static inline void pds_scheduler_task_tick(struct rq *rq)
++{
++ struct task_struct *p = rq->curr;
++
++ if (is_idle_task(p))
++ return;
++
++ pds_update_curr(rq, p);
++
++ cpufreq_update_util(rq, 0);
++
++ /*
++ * Tasks that were scheduled in the first half of a tick are not
++ * allowed to run into the 2nd half of the next tick if they will
++ * run out of time slice in the interim. Otherwise, if they have
++ * less than RESCHED_US μs of time slice left they will be rescheduled.
++ */
++ if (p->time_slice - rq->dither >= RESCHED_US)
++ return;
++
++ /**
++ * p->time_slice < RESCHED_US. We will modify task_struct under
++ * rq lock as p is rq->curr
++ */
++ __set_tsk_resched(p);
++}
++
++#ifdef CONFIG_SMP
++
++#ifdef CONFIG_SCHED_SMT
++static int active_load_balance_cpu_stop(void *data)
++{
++ struct rq *rq = this_rq();
++ struct task_struct *p = data;
++ int cpu;
++ unsigned long flags;
++
++ local_irq_save(flags);
++
++ raw_spin_lock(&p->pi_lock);
++ raw_spin_lock(&rq->lock);
++
++ rq->active_balance = 0;
++ /*
++ * _something_ may have changed the task, double check again
++ */
++ if (task_on_rq_queued(p) && task_rq(p) == rq &&
++ (cpu = cpumask_any_and(&p->cpus_allowed, &sched_cpu_sg_idle_mask)) < nr_cpu_ids)
++ rq = __migrate_task(rq, p, cpu);
++
++ raw_spin_unlock(&rq->lock);
++ raw_spin_unlock(&p->pi_lock);
++
++ local_irq_restore(flags);
++
++ return 0;
++}
++
++/* pds_sg_balance_trigger - trigger slibing group balance for @cpu */
++static void pds_sg_balance_trigger(const int cpu)
++{
++ struct rq *rq = cpu_rq(cpu);
++ unsigned long flags;
++ struct task_struct *curr;
++
++ if (!raw_spin_trylock_irqsave(&rq->lock, flags))
++ return;
++ curr = rq->curr;
++ if (!is_idle_task(curr) &&
++ cpumask_intersects(&curr->cpus_allowed, &sched_cpu_sg_idle_mask)) {
++ int active_balance = 0;
++
++ if (likely(!rq->active_balance)) {
++ rq->active_balance = 1;
++ active_balance = 1;
++ }
++
++ raw_spin_unlock_irqrestore(&rq->lock, flags);
++
++ if (likely(active_balance))
++ stop_one_cpu_nowait(cpu, active_load_balance_cpu_stop,
++ curr, &rq->active_balance_work);
++ } else
++ raw_spin_unlock_irqrestore(&rq->lock, flags);
++}
++
++/*
++ * pds_sg_balance_check - slibing group balance check for run queue @rq
++ */
++static inline void pds_sg_balance_check(const struct rq *rq)
++{
++ cpumask_t chk;
++ int i;
++
++ /* Only online cpu will do sg balance checking */
++ if (unlikely(!rq->online))
++ return;
++
++ /* Only cpu in slibing idle group will do the checking */
++ if (!cpumask_test_cpu(cpu_of(rq), &sched_cpu_sg_idle_mask))
++ return;
++
++ /* Find potential cpus which can migrate the currently running task */
++ if (!cpumask_andnot(&chk, &sched_rq_pending_masks[SCHED_RQ_EMPTY],
++ &sched_rq_queued_masks[SCHED_RQ_EMPTY]))
++ return;
++
++ for_each_cpu(i, &chk) {
++ /* skip the cpu which has idle slibing cpu */
++ if (cpumask_test_cpu(per_cpu(sched_sibling_cpu, i),
++ &sched_rq_queued_masks[SCHED_RQ_EMPTY]))
++ continue;
++ pds_sg_balance_trigger(i);
++ }
++}
++#endif /* CONFIG_SCHED_SMT */
++#endif /* CONFIG_SMP */
++
++/*
++ * This function gets called by the timer code, with HZ frequency.
++ * We call it with interrupts disabled.
++ */
++void scheduler_tick(void)
++{
++ int cpu __maybe_unused = smp_processor_id();
++ struct rq *rq = cpu_rq(cpu);
++
++ sched_clock_tick();
++
++ raw_spin_lock(&rq->lock);
++ update_rq_clock(rq);
++
++ pds_scheduler_task_tick(rq);
++ update_sched_rq_queued_masks_normal(rq);
++ calc_global_load_tick(rq);
++ psi_task_tick(rq);
++
++ rq->last_tick = rq->clock;
++ raw_spin_unlock(&rq->lock);
++
++ perf_event_task_tick();
++}
++
++#ifdef CONFIG_NO_HZ_FULL
++struct tick_work {
++ int cpu;
++ struct delayed_work work;
++};
++
++static struct tick_work __percpu *tick_work_cpu;
++
++static void sched_tick_remote(struct work_struct *work)
++{
++ struct delayed_work *dwork = to_delayed_work(work);
++ struct tick_work *twork = container_of(dwork, struct tick_work, work);
++ int cpu = twork->cpu;
++ struct rq *rq = cpu_rq(cpu);
++ struct task_struct *curr;
++ unsigned long flags;
++ u64 delta;
++
++ /*
++ * Handle the tick only if it appears the remote CPU is running in full
++ * dynticks mode. The check is racy by nature, but missing a tick or
++ * having one too much is no big deal because the scheduler tick updates
++ * statistics and checks timeslices in a time-independent way, regardless
++ * of when exactly it is running.
++ */
++ if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
++ goto out_requeue;
++
++ raw_spin_lock_irqsave(&rq->lock, flags);
++ curr = rq->curr;
++
++ if (is_idle_task(curr))
++ goto out_unlock;
++
++ update_rq_clock(rq);
++ delta = rq_clock_task(rq) - curr->last_ran;
++
++ /*
++ * Make sure the next tick runs within a reasonable
++ * amount of time.
++ */
++ WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
++ pds_scheduler_task_tick(rq);
++ update_sched_rq_queued_masks_normal(rq);
++
++out_unlock:
++ raw_spin_unlock_irqrestore(&rq->lock, flags);
++
++out_requeue:
++ /*
++ * Run the remote tick once per second (1Hz). This arbitrary
++ * frequency is large enough to avoid overload but short enough
++ * to keep scheduler internal stats reasonably up to date.
++ */
++ queue_delayed_work(system_unbound_wq, dwork, HZ);
++}
++
++static void sched_tick_start(int cpu)
++{
++ struct tick_work *twork;
++
++ if (housekeeping_cpu(cpu, HK_FLAG_TICK))
++ return;
++
++ WARN_ON_ONCE(!tick_work_cpu);
++
++ twork = per_cpu_ptr(tick_work_cpu, cpu);
++ twork->cpu = cpu;
++ INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
++ queue_delayed_work(system_unbound_wq, &twork->work, HZ);
++}
++
++#ifdef CONFIG_HOTPLUG_CPU
++static void sched_tick_stop(int cpu)
++{
++ struct tick_work *twork;
++
++ if (housekeeping_cpu(cpu, HK_FLAG_TICK))
++ return;
++
++ WARN_ON_ONCE(!tick_work_cpu);
++
++ twork = per_cpu_ptr(tick_work_cpu, cpu);
++ cancel_delayed_work_sync(&twork->work);
++}
++#endif /* CONFIG_HOTPLUG_CPU */
++
++int __init sched_tick_offload_init(void)
++{
++ tick_work_cpu = alloc_percpu(struct tick_work);
++ BUG_ON(!tick_work_cpu);
++
++ return 0;
++}
++
++#else /* !CONFIG_NO_HZ_FULL */
++static inline void sched_tick_start(int cpu) { }
++static inline void sched_tick_stop(int cpu) { }
++#endif
++
++#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
++ defined(CONFIG_PREEMPT_TRACER))
++/*
++ * If the value passed in is equal to the current preempt count
++ * then we just disabled preemption. Start timing the latency.
++ */
++static inline void preempt_latency_start(int val)
++{
++ if (preempt_count() == val) {
++ unsigned long ip = get_lock_parent_ip();
++#ifdef CONFIG_DEBUG_PREEMPT
++ current->preempt_disable_ip = ip;
++#endif
++ trace_preempt_off(CALLER_ADDR0, ip);
++ }
++}
++
++void preempt_count_add(int val)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++ /*
++ * Underflow?
++ */
++ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
++ return;
++#endif
++ __preempt_count_add(val);
++#ifdef CONFIG_DEBUG_PREEMPT
++ /*
++ * Spinlock count overflowing soon?
++ */
++ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
++ PREEMPT_MASK - 10);
++#endif
++ preempt_latency_start(val);
++}
++EXPORT_SYMBOL(preempt_count_add);
++NOKPROBE_SYMBOL(preempt_count_add);
++
++/*
++ * If the value passed in equals to the current preempt count
++ * then we just enabled preemption. Stop timing the latency.
++ */
++static inline void preempt_latency_stop(int val)
++{
++ if (preempt_count() == val)
++ trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
++}
++
++void preempt_count_sub(int val)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++ /*
++ * Underflow?
++ */
++ if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
++ return;
++ /*
++ * Is the spinlock portion underflowing?
++ */
++ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
++ !(preempt_count() & PREEMPT_MASK)))
++ return;
++#endif
++
++ preempt_latency_stop(val);
++ __preempt_count_sub(val);
++}
++EXPORT_SYMBOL(preempt_count_sub);
++NOKPROBE_SYMBOL(preempt_count_sub);
++
++#else
++static inline void preempt_latency_start(int val) { }
++static inline void preempt_latency_stop(int val) { }
++#endif
++
++/*
++ * Timeslices below RESCHED_US are considered as good as expired as there's no
++ * point rescheduling when there's so little time left. SCHED_BATCH tasks
++ * have been flagged be not latency sensitive and likely to be fully CPU
++ * bound so every time they're rescheduled they have their time_slice
++ * refilled, but get a new later deadline to have little effect on
++ * SCHED_NORMAL tasks.
++
++ */
++static inline void check_deadline(struct task_struct *p, struct rq *rq)
++{
++ if (rq->idle == p)
++ return;
++
++ pds_update_curr(rq, p);
++
++ if (p->time_slice < RESCHED_US) {
++ time_slice_expired(p, rq);
++ if (SCHED_ISO == p->policy && ISO_PRIO == p->prio) {
++ p->prio = NORMAL_PRIO;
++ p->deadline = rq->clock + task_deadline_diff(p);
++ update_task_priodl(p);
++ }
++ if (SCHED_FIFO != p->policy && task_on_rq_queued(p))
++ requeue_task(p, rq);
++ }
++}
++
++#ifdef CONFIG_SMP
++
++#define SCHED_RQ_NR_MIGRATION (32UL)
++/*
++ * Migrate pending tasks in @rq to @dest_cpu
++ * Will try to migrate mininal of half of @rq nr_running tasks and
++ * SCHED_RQ_NR_MIGRATION to @dest_cpu
++ */
++static inline int
++migrate_pending_tasks(struct rq *rq, struct rq *dest_rq, int filter_prio)
++{
++ struct task_struct *p;
++ int dest_cpu = cpu_of(dest_rq);
++ int nr_migrated = 0;
++ int nr_tries = min((rq->nr_running + 1) / 2, SCHED_RQ_NR_MIGRATION);
++ struct skiplist_node *node = rq->sl_header.next[0];
++
++ while (nr_tries && node != &rq->sl_header) {
++ p = skiplist_entry(node, struct task_struct, sl_node);
++ node = node->next[0];
++
++ if (task_running(p))
++ continue;
++ if (p->prio >= filter_prio)
++ break;
++ if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) {
++ detach_task(rq, p, dest_cpu);
++ attach_task(dest_rq, p);
++ nr_migrated++;
++ }
++ nr_tries--;
++ /* make a jump */
++ if (node == &rq->sl_header)
++ break;
++ node = node->next[0];
++ }
++
++ return nr_migrated;
++}
++
++static inline int
++take_queued_task_cpumask(struct rq *rq, cpumask_t *chk_mask, int filter_prio)
++{
++ int src_cpu;
++
++ for_each_cpu(src_cpu, chk_mask) {
++ int nr_migrated;
++ struct rq *src_rq = cpu_rq(src_cpu);
++
++ if (!do_raw_spin_trylock(&src_rq->lock)) {
++ if (PRIO_LIMIT == filter_prio)
++ continue;
++ return 0;
++ }
++ spin_acquire(&src_rq->lock.dep_map, SINGLE_DEPTH_NESTING, 1, _RET_IP_);
++
++ update_rq_clock(src_rq);
++ nr_migrated = migrate_pending_tasks(src_rq, rq, filter_prio);
++
++ spin_release(&src_rq->lock.dep_map, 1, _RET_IP_);
++ do_raw_spin_unlock(&src_rq->lock);
++
++ if (nr_migrated || PRIO_LIMIT != filter_prio)
++ return nr_migrated;
++ }
++ return 0;
++}
++
++static inline int take_other_rq_task(struct rq *rq, int cpu, int filter_prio)
++{
++ struct cpumask *affinity_mask, *end;
++ struct cpumask chk;
++
++ if (PRIO_LIMIT == filter_prio) {
++ cpumask_complement(&chk, &sched_rq_pending_masks[SCHED_RQ_EMPTY]);
++#ifdef CONFIG_SMT_NICE
++ {
++ /* also try to take IDLE priority tasks from smt supressed cpu */
++ struct cpumask t;
++ if (cpumask_and(&t, &sched_smt_supressed_mask,
++ &sched_rq_queued_masks[SCHED_RQ_IDLE]))
++ cpumask_or(&chk, &chk, &t);
++ }
++#endif
++ } else if (NORMAL_PRIO == filter_prio) {
++ cpumask_or(&chk, &sched_rq_pending_masks[SCHED_RQ_RT],
++ &sched_rq_pending_masks[SCHED_RQ_ISO]);
++ } else if (IDLE_PRIO == filter_prio) {
++ cpumask_complement(&chk, &sched_rq_pending_masks[SCHED_RQ_EMPTY]);
++ cpumask_andnot(&chk, &chk, &sched_rq_pending_masks[SCHED_RQ_IDLE]);
++ } else
++ cpumask_copy(&chk, &sched_rq_pending_masks[SCHED_RQ_RT]);
++
++ if (cpumask_empty(&chk))
++ return 0;
++
++ affinity_mask = per_cpu(sched_cpu_llc_start_mask, cpu);
++ end = per_cpu(sched_cpu_affinity_chk_end_masks, cpu);
++ do {
++ struct cpumask tmp;
++
++ if (cpumask_and(&tmp, &chk, affinity_mask) &&
++ take_queued_task_cpumask(rq, &tmp, filter_prio))
++ return 1;
++ } while (++affinity_mask < end);
++
++ return 0;
++}
++#endif
++
++static inline struct task_struct *
++choose_next_task(struct rq *rq, int cpu, struct task_struct *prev)
++{
++ struct task_struct *next = rq_first_queued_task(rq);
++
++#ifdef CONFIG_SMT_NICE
++ if (cpumask_test_cpu(cpu, &sched_smt_supressed_mask)) {
++ if (next->prio >= IDLE_PRIO) {
++ if (rq->online &&
++ take_other_rq_task(rq, cpu, IDLE_PRIO))
++ return rq_first_queued_task(rq);
++ return rq->idle;
++ }
++ }
++#endif
++
++#ifdef CONFIG_SMP
++ if (likely(rq->online))
++ if (take_other_rq_task(rq, cpu, next->prio)) {
++ resched_curr(rq);
++ return rq_first_queued_task(rq);
++ }
++#endif
++ return next;
++}
++
++static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
++{
++#ifdef CONFIG_DEBUG_PREEMPT
++ return p->preempt_disable_ip;
++#else
++ return 0;
++#endif
++}
++
++/*
++ * Print scheduling while atomic bug:
++ */
++static noinline void __schedule_bug(struct task_struct *prev)
++{
++ /* Save this before calling printk(), since that will clobber it */
++ unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
++
++ if (oops_in_progress)
++ return;
++
++ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
++ prev->comm, prev->pid, preempt_count());
++
++ debug_show_held_locks(prev);
++ print_modules();
++ if (irqs_disabled())
++ print_irqtrace_events(prev);
++ if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
++ && in_atomic_preempt_off()) {
++ pr_err("Preemption disabled at:");
++ print_ip_sym(preempt_disable_ip);
++ pr_cont("\n");
++ }
++ if (panic_on_warn)
++ panic("scheduling while atomic\n");
++
++ dump_stack();
++ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++
++/*
++ * Various schedule()-time debugging checks and statistics:
++ */
++static inline void schedule_debug(struct task_struct *prev)
++{
++#ifdef CONFIG_SCHED_STACK_END_CHECK
++ if (task_stack_end_corrupted(prev))
++ panic("corrupted stack end detected inside scheduler\n");
++#endif
++
++ if (unlikely(in_atomic_preempt_off())) {
++ __schedule_bug(prev);
++ preempt_count_set(PREEMPT_DISABLED);
++ }
++ rcu_sleep_check();
++
++ profile_hit(SCHED_PROFILING, __builtin_return_address(0));
++
++ schedstat_inc(this_rq()->sched_count);
++}
++
++static inline void set_rq_task(struct rq *rq, struct task_struct *p)
++{
++ p->last_ran = rq->clock_task;
++
++#ifdef CONFIG_HIGH_RES_TIMERS
++ if (p != rq->idle)
++ hrtick_start(rq, US_TO_NS(p->time_slice));
++#endif
++ /* update rq->dither */
++ rq->dither = rq_dither(rq);
++}
++
++/*
++ * schedule() is the main scheduler function.
++ *
++ * The main means of driving the scheduler and thus entering this function are:
++ *
++ * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
++ *
++ * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
++ * paths. For example, see arch/x86/entry_64.S.
++ *
++ * To drive preemption between tasks, the scheduler sets the flag in timer
++ * interrupt handler scheduler_tick().
++ *
++ * 3. Wakeups don't really cause entry into schedule(). They add a
++ * task to the run-queue and that's it.
++ *
++ * Now, if the new task added to the run-queue preempts the current
++ * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
++ * called on the nearest possible occasion:
++ *
++ * - If the kernel is preemptible (CONFIG_PREEMPT=y):
++ *
++ * - in syscall or exception context, at the next outmost
++ * preempt_enable(). (this might be as soon as the wake_up()'s
++ * spin_unlock()!)
++ *
++ * - in IRQ context, return from interrupt-handler to
++ * preemptible context
++ *
++ * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
++ * then at the next:
++ *
++ * - cond_resched() call
++ * - explicit schedule() call
++ * - return from syscall or exception to user-space
++ * - return from interrupt-handler to user-space
++ *
++ * WARNING: must be called with preemption disabled!
++ */
++static void __sched notrace __schedule(bool preempt)
++{
++ struct task_struct *prev, *next;
++ unsigned long *switch_count;
++ struct rq *rq;
++ int cpu;
++
++ cpu = smp_processor_id();
++ rq = cpu_rq(cpu);
++ prev = rq->curr;
++
++ schedule_debug(prev);
++
++ /* by passing sched_feat(HRTICK) checking which PDS doesn't support */
++ hrtick_clear(rq);
++
++ local_irq_disable();
++ rcu_note_context_switch(preempt);
++
++ /*
++ * Make sure that signal_pending_state()->signal_pending() below
++ * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
++ * done by the caller to avoid the race with signal_wake_up().
++ *
++ * The membarrier system call requires a full memory barrier
++ * after coming from user-space, before storing to rq->curr.
++ */
++ raw_spin_lock(&rq->lock);
++ smp_mb__after_spinlock();
++
++ update_rq_clock(rq);
++
++ switch_count = &prev->nivcsw;
++ if (!preempt && prev->state) {
++ if (signal_pending_state(prev->state, prev)) {
++ prev->state = TASK_RUNNING;
++ } else {
++ deactivate_task(prev, rq);
++
++ if (prev->in_iowait) {
++ atomic_inc(&rq->nr_iowait);
++ delayacct_blkio_start();
++ }
++
++ /*
++ * If a worker is going to sleep, notify and
++ * ask workqueue whether it wants to wake up a
++ * task to maintain concurrency. If so, wake
++ * up the task.
++ */
++ if (prev->flags & PF_WQ_WORKER) {
++ struct task_struct *to_wakeup;
++
++ to_wakeup = wq_worker_sleeping(prev);
++ if (to_wakeup)
++ try_to_wake_up_local(to_wakeup);
++ }
++ }
++ switch_count = &prev->nvcsw;
++ }
++
++ clear_tsk_need_resched(prev);
++ clear_preempt_need_resched();
++
++ check_deadline(prev, rq);
++
++ next = choose_next_task(rq, cpu, prev);
++
++ set_rq_task(rq, next);
++
++ if (prev != next) {
++ if (next->prio == PRIO_LIMIT)
++ schedstat_inc(rq->sched_goidle);
++
++ rq->curr = next;
++ /*
++ * The membarrier system call requires each architecture
++ * to have a full memory barrier after updating
++ * rq->curr, before returning to user-space.
++ *
++ * Here are the schemes providing that barrier on the
++ * various architectures:
++ * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
++ * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
++ * - finish_lock_switch() for weakly-ordered
++ * architectures where spin_unlock is a full barrier,
++ * - switch_to() for arm64 (weakly-ordered, spin_unlock
++ * is a RELEASE barrier),
++ */
++ ++*switch_count;
++ rq->nr_switches++;
++
++ trace_sched_switch(preempt, prev, next);
++
++ /* Also unlocks the rq: */
++ rq = context_switch(rq, prev, next);
++#ifdef CONFIG_SCHED_SMT
++ pds_sg_balance_check(rq);
++#endif
++ } else
++ raw_spin_unlock_irq(&rq->lock);
++}
++
++void __noreturn do_task_dead(void)
++{
++ /* Causes final put_task_struct in finish_task_switch(): */
++ set_special_state(TASK_DEAD);
++
++ /* Tell freezer to ignore us: */
++ current->flags |= PF_NOFREEZE;
++ __schedule(false);
++
++ BUG();
++
++ /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
++ for (;;)
++ cpu_relax();
++}
++
++static inline void sched_submit_work(struct task_struct *tsk)
++{
++ if (!tsk->state || tsk_is_pi_blocked(tsk) ||
++ signal_pending_state(tsk->state, tsk))
++ return;
++
++ /*
++ * If we are going to sleep and we have plugged IO queued,
++ * make sure to submit it to avoid deadlocks.
++ */
++ if (blk_needs_flush_plug(tsk))
++ blk_schedule_flush_plug(tsk);
++}
++
++asmlinkage __visible void __sched schedule(void)
++{
++ struct task_struct *tsk = current;
++
++ sched_submit_work(tsk);
++ do {
++ preempt_disable();
++ __schedule(false);
++ sched_preempt_enable_no_resched();
++ } while (need_resched());
++}
++EXPORT_SYMBOL(schedule);
++
++/*
++ * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
++ * state (have scheduled out non-voluntarily) by making sure that all
++ * tasks have either left the run queue or have gone into user space.
++ * As idle tasks do not do either, they must not ever be preempted
++ * (schedule out non-voluntarily).
++ *
++ * schedule_idle() is similar to schedule_preempt_disable() except that it
++ * never enables preemption because it does not call sched_submit_work().
++ */
++void __sched schedule_idle(void)
++{
++ /*
++ * As this skips calling sched_submit_work(), which the idle task does
++ * regardless because that function is a nop when the task is in a
++ * TASK_RUNNING state, make sure this isn't used someplace that the
++ * current task can be in any other state. Note, idle is always in the
++ * TASK_RUNNING state.
++ */
++ WARN_ON_ONCE(current->state);
++ do {
++ __schedule(false);
++ } while (need_resched());
++}
++
++#ifdef CONFIG_CONTEXT_TRACKING
++asmlinkage __visible void __sched schedule_user(void)
++{
++ /*
++ * If we come here after a random call to set_need_resched(),
++ * or we have been woken up remotely but the IPI has not yet arrived,
++ * we haven't yet exited the RCU idle mode. Do it here manually until
++ * we find a better solution.
++ *
++ * NB: There are buggy callers of this function. Ideally we
++ * should warn if prev_state != CONTEXT_USER, but that will trigger
++ * too frequently to make sense yet.
++ */
++ enum ctx_state prev_state = exception_enter();
++ schedule();
++ exception_exit(prev_state);
++}
++#endif
++
++/**
++ * schedule_preempt_disabled - called with preemption disabled
++ *
++ * Returns with preemption disabled. Note: preempt_count must be 1
++ */
++void __sched schedule_preempt_disabled(void)
++{
++ sched_preempt_enable_no_resched();
++ schedule();
++ preempt_disable();
++}
++
++static void __sched notrace preempt_schedule_common(void)
++{
++ do {
++ /*
++ * Because the function tracer can trace preempt_count_sub()
++ * and it also uses preempt_enable/disable_notrace(), if
++ * NEED_RESCHED is set, the preempt_enable_notrace() called
++ * by the function tracer will call this function again and
++ * cause infinite recursion.
++ *
++ * Preemption must be disabled here before the function
++ * tracer can trace. Break up preempt_disable() into two
++ * calls. One to disable preemption without fear of being
++ * traced. The other to still record the preemption latency,
++ * which can also be traced by the function tracer.
++ */
++ preempt_disable_notrace();
++ preempt_latency_start(1);
++ __schedule(true);
++ preempt_latency_stop(1);
++ preempt_enable_no_resched_notrace();
++
++ /*
++ * Check again in case we missed a preemption opportunity
++ * between schedule and now.
++ */
++ } while (need_resched());
++}
++
++#ifdef CONFIG_PREEMPT
++/*
++ * this is the entry point to schedule() from in-kernel preemption
++ * off of preempt_enable. Kernel preemptions off return from interrupt
++ * occur there and call schedule directly.
++ */
++asmlinkage __visible void __sched notrace preempt_schedule(void)
++{
++ /*
++ * If there is a non-zero preempt_count or interrupts are disabled,
++ * we do not want to preempt the current task. Just return..
++ */
++ if (likely(!preemptible()))
++ return;
++
++ preempt_schedule_common();
++}
++NOKPROBE_SYMBOL(preempt_schedule);
++EXPORT_SYMBOL(preempt_schedule);
++
++/**
++ * preempt_schedule_notrace - preempt_schedule called by tracing
++ *
++ * The tracing infrastructure uses preempt_enable_notrace to prevent
++ * recursion and tracing preempt enabling caused by the tracing
++ * infrastructure itself. But as tracing can happen in areas coming
++ * from userspace or just about to enter userspace, a preempt enable
++ * can occur before user_exit() is called. This will cause the scheduler
++ * to be called when the system is still in usermode.
++ *
++ * To prevent this, the preempt_enable_notrace will use this function
++ * instead of preempt_schedule() to exit user context if needed before
++ * calling the scheduler.
++ */
++asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
++{
++ enum ctx_state prev_ctx;
++
++ if (likely(!preemptible()))
++ return;
++
++ do {
++ /*
++ * Because the function tracer can trace preempt_count_sub()
++ * and it also uses preempt_enable/disable_notrace(), if
++ * NEED_RESCHED is set, the preempt_enable_notrace() called
++ * by the function tracer will call this function again and
++ * cause infinite recursion.
++ *
++ * Preemption must be disabled here before the function
++ * tracer can trace. Break up preempt_disable() into two
++ * calls. One to disable preemption without fear of being
++ * traced. The other to still record the preemption latency,
++ * which can also be traced by the function tracer.
++ */
++ preempt_disable_notrace();
++ preempt_latency_start(1);
++ /*
++ * Needs preempt disabled in case user_exit() is traced
++ * and the tracer calls preempt_enable_notrace() causing
++ * an infinite recursion.
++ */
++ prev_ctx = exception_enter();
++ __schedule(true);
++ exception_exit(prev_ctx);
++
++ preempt_latency_stop(1);
++ preempt_enable_no_resched_notrace();
++ } while (need_resched());
++}
++EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
++
++#endif /* CONFIG_PREEMPT */
++
++/*
++ * this is the entry point to schedule() from kernel preemption
++ * off of irq context.
++ * Note, that this is called and return with irqs disabled. This will
++ * protect us against recursive calling from irq.
++ */
++asmlinkage __visible void __sched preempt_schedule_irq(void)
++{
++ enum ctx_state prev_state;
++
++ /* Catch callers which need to be fixed */
++ BUG_ON(preempt_count() || !irqs_disabled());
++
++ prev_state = exception_enter();
++
++ do {
++ preempt_disable();
++ local_irq_enable();
++ __schedule(true);
++ local_irq_disable();
++ sched_preempt_enable_no_resched();
++ } while (need_resched());
++
++ exception_exit(prev_state);
++}
++
++int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
++ void *key)
++{
++ return try_to_wake_up(curr->private, mode, wake_flags);
++}
++EXPORT_SYMBOL(default_wake_function);
++
++static inline void
++check_task_changed(struct rq *rq, struct task_struct *p)
++{
++ /*
++ * Trigger changes when task priority/deadline modified.
++ */
++ if (task_on_rq_queued(p)) {
++ struct task_struct *first;
++
++ requeue_task(p, rq);
++
++ /* Resched if first queued task not running and not IDLE */
++ if ((first = rq_first_queued_task(rq)) != rq->curr &&
++ !task_running_idle(first))
++ resched_curr(rq);
++ }
++}
++
++#ifdef CONFIG_RT_MUTEXES
++
++static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
++{
++ if (pi_task)
++ prio = min(prio, pi_task->prio);
++
++ return prio;
++}
++
++static inline int rt_effective_prio(struct task_struct *p, int prio)
++{
++ struct task_struct *pi_task = rt_mutex_get_top_task(p);
++
++ return __rt_effective_prio(pi_task, prio);
++}
++
++/*
++ * rt_mutex_setprio - set the current priority of a task
++ * @p: task to boost
++ * @pi_task: donor task
++ *
++ * This function changes the 'effective' priority of a task. It does
++ * not touch ->normal_prio like __setscheduler().
++ *
++ * Used by the rt_mutex code to implement priority inheritance
++ * logic. Call site only calls if the priority of the task changed.
++ */
++void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
++{
++ int prio;
++ struct rq *rq;
++ raw_spinlock_t *lock;
++
++ /* XXX used to be waiter->prio, not waiter->task->prio */
++ prio = __rt_effective_prio(pi_task, p->normal_prio);
++
++ /*
++ * If nothing changed; bail early.
++ */
++ if (p->pi_top_task == pi_task && prio == p->prio)
++ return;
++
++ rq = __task_access_lock(p, &lock);
++ /*
++ * Set under pi_lock && rq->lock, such that the value can be used under
++ * either lock.
++ *
++ * Note that there is loads of tricky to make this pointer cache work
++ * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
++ * ensure a task is de-boosted (pi_task is set to NULL) before the
++ * task is allowed to run again (and can exit). This ensures the pointer
++ * points to a blocked task -- which guaratees the task is present.
++ */
++ p->pi_top_task = pi_task;
++
++ /*
++ * For FIFO/RR we only need to set prio, if that matches we're done.
++ */
++ if (prio == p->prio)
++ goto out_unlock;
++
++ /*
++ * Idle task boosting is a nono in general. There is one
++ * exception, when PREEMPT_RT and NOHZ is active:
++ *
++ * The idle task calls get_next_timer_interrupt() and holds
++ * the timer wheel base->lock on the CPU and another CPU wants
++ * to access the timer (probably to cancel it). We can safely
++ * ignore the boosting request, as the idle CPU runs this code
++ * with interrupts disabled and will complete the lock
++ * protected section without being interrupted. So there is no
++ * real need to boost.
++ */
++ if (unlikely(p == rq->idle)) {
++ WARN_ON(p != rq->curr);
++ WARN_ON(p->pi_blocked_on);
++ goto out_unlock;
++ }
++
++ trace_sched_pi_setprio(p, pi_task);
++ p->prio = prio;
++ update_task_priodl(p);
++
++ check_task_changed(rq, p);
++
++out_unlock:
++ __task_access_unlock(p, lock);
++}
++#else
++static inline int rt_effective_prio(struct task_struct *p, int prio)
++{
++ return prio;
++}
++#endif
++
++void set_user_nice(struct task_struct *p, long nice)
++{
++ int new_static;
++ unsigned long flags;
++ struct rq *rq;
++ raw_spinlock_t *lock;
++
++ if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
++ return;
++ new_static = NICE_TO_PRIO(nice);
++ /*
++ * We have to be careful, if called from sys_setpriority(),
++ * the task might be in the middle of scheduling on another CPU.
++ */
++ raw_spin_lock_irqsave(&p->pi_lock, flags);
++ rq = __task_access_lock(p, &lock);
++
++ /* rq lock may not held!! */
++ update_rq_clock(rq);
++
++ p->static_prio = new_static;
++ /*
++ * The RT priorities are set via sched_setscheduler(), but we still
++ * allow the 'normal' nice value to be set - but as expected
++ * it wont have any effect on scheduling until the task is
++ * not SCHED_NORMAL/SCHED_BATCH:
++ */
++ if (task_has_rt_policy(p))
++ goto out_unlock;
++
++ p->deadline -= task_deadline_diff(p);
++ p->deadline += static_deadline_diff(new_static);
++ p->prio = effective_prio(p);
++ update_task_priodl(p);
++
++ check_task_changed(rq, p);
++out_unlock:
++ __task_access_unlock(p, lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++}
++EXPORT_SYMBOL(set_user_nice);
++
++/*
++ * can_nice - check if a task can reduce its nice value
++ * @p: task
++ * @nice: nice value
++ */
++int can_nice(const struct task_struct *p, const int nice)
++{
++ /* Convert nice value [19,-20] to rlimit style value [1,40] */
++ int nice_rlim = nice_to_rlimit(nice);
++
++ return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
++ capable(CAP_SYS_NICE));
++}
++
++#ifdef __ARCH_WANT_SYS_NICE
++
++/*
++ * sys_nice - change the priority of the current process.
++ * @increment: priority increment
++ *
++ * sys_setpriority is a more generic, but much slower function that
++ * does similar things.
++ */
++SYSCALL_DEFINE1(nice, int, increment)
++{
++ long nice, retval;
++
++ /*
++ * Setpriority might change our priority at the same moment.
++ * We don't have to worry. Conceptually one call occurs first
++ * and we have a single winner.
++ */
++
++ increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
++ nice = task_nice(current) + increment;
++
++ nice = clamp_val(nice, MIN_NICE, MAX_NICE);
++ if (increment < 0 && !can_nice(current, nice))
++ return -EPERM;
++
++ retval = security_task_setnice(current, nice);
++ if (retval)
++ return retval;
++
++ set_user_nice(current, nice);
++ return 0;
++}
++
++#endif
++
++/**
++ * task_prio - return the priority value of a given task.
++ * @p: the task in question.
++ *
++ * Return: The priority value as seen by users in /proc.
++ * RT tasks are offset by -100. Normal tasks are centered around 1, value goes
++ * from 0(SCHED_ISO) up to 82 (nice +19 SCHED_IDLE).
++ */
++int task_prio(const struct task_struct *p)
++{
++ int level, prio = p->prio - MAX_RT_PRIO;
++ static const int level_to_nice_prio[] = {39, 33, 26, 20, 14, 7, 0, 0};
++
++ /* rt tasks */
++ if (prio <= 0)
++ goto out;
++
++ preempt_disable();
++ level = task_deadline_level(p, this_rq());
++ preempt_enable();
++ prio += level_to_nice_prio[level];
++ if (idleprio_task(p))
++ prio += NICE_WIDTH;
++out:
++ return prio;
++}
++
++/**
++ * idle_cpu - is a given CPU idle currently?
++ * @cpu: the processor in question.
++ *
++ * Return: 1 if the CPU is currently idle. 0 otherwise.
++ */
++int idle_cpu(int cpu)
++{
++ return cpu_curr(cpu) == cpu_rq(cpu)->idle;
++}
++
++/**
++ * idle_task - return the idle task for a given CPU.
++ * @cpu: the processor in question.
++ *
++ * Return: The idle task for the cpu @cpu.
++ */
++struct task_struct *idle_task(int cpu)
++{
++ return cpu_rq(cpu)->idle;
++}
++
++/**
++ * find_process_by_pid - find a process with a matching PID value.
++ * @pid: the pid in question.
++ *
++ * The task of @pid, if found. %NULL otherwise.
++ */
++static inline struct task_struct *find_process_by_pid(pid_t pid)
++{
++ return pid ? find_task_by_vpid(pid) : current;
++}
++
++#ifdef CONFIG_SMP
++void sched_set_stop_task(int cpu, struct task_struct *stop)
++{
++ struct sched_param stop_param = { .sched_priority = STOP_PRIO };
++ struct sched_param start_param = { .sched_priority = 0 };
++ struct task_struct *old_stop = cpu_rq(cpu)->stop;
++
++ if (stop) {
++ /*
++ * Make it appear like a SCHED_FIFO task, its something
++ * userspace knows about and won't get confused about.
++ *
++ * Also, it will make PI more or less work without too
++ * much confusion -- but then, stop work should not
++ * rely on PI working anyway.
++ */
++ sched_setscheduler_nocheck(stop, SCHED_FIFO, &stop_param);
++ }
++
++ cpu_rq(cpu)->stop = stop;
++
++ if (old_stop) {
++ /*
++ * Reset it back to a normal scheduling policy so that
++ * it can die in pieces.
++ */
++ sched_setscheduler_nocheck(old_stop, SCHED_NORMAL, &start_param);
++ }
++}
++
++/*
++ * Change a given task's CPU affinity. Migrate the thread to a
++ * proper CPU and schedule it away if the CPU it's executing on
++ * is removed from the allowed bitmask.
++ *
++ * NOTE: the caller must have a valid reference to the task, the
++ * task must not exit() & deallocate itself prematurely. The
++ * call is not atomic; no spinlocks may be held.
++ */
++static int __set_cpus_allowed_ptr(struct task_struct *p,
++ const struct cpumask *new_mask, bool check)
++{
++ const struct cpumask *cpu_valid_mask = cpu_active_mask;
++ int dest_cpu;
++ unsigned long flags;
++ struct rq *rq;
++ raw_spinlock_t *lock;
++ int ret = 0;
++
++ raw_spin_lock_irqsave(&p->pi_lock, flags);
++ rq = __task_access_lock(p, &lock);
++
++ if (p->flags & PF_KTHREAD) {
++ /*
++ * Kernel threads are allowed on online && !active CPUs
++ */
++ cpu_valid_mask = cpu_online_mask;
++ }
++
++ /*
++ * Must re-check here, to close a race against __kthread_bind(),
++ * sched_setaffinity() is not guaranteed to observe the flag.
++ */
++ if (check && (p->flags & PF_NO_SETAFFINITY)) {
++ ret = -EINVAL;
++ goto out;
++ }
++
++ if (cpumask_equal(&p->cpus_allowed, new_mask))
++ goto out;
++
++ if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
++ ret = -EINVAL;
++ goto out;
++ }
++
++ do_set_cpus_allowed(p, new_mask);
++
++ if (p->flags & PF_KTHREAD) {
++ /*
++ * For kernel threads that do indeed end up on online &&
++ * !active we want to ensure they are strict per-CPU threads.
++ */
++ WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
++ !cpumask_intersects(new_mask, cpu_active_mask) &&
++ p->nr_cpus_allowed != 1);
++ }
++
++ /* Can the task run on the task's current CPU? If so, we're done */
++ if (cpumask_test_cpu(task_cpu(p), new_mask))
++ goto out;
++
++ dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
++ if (task_running(p) || p->state == TASK_WAKING) {
++ struct migration_arg arg = { p, dest_cpu };
++
++ /* Need help from migration thread: drop lock and wait. */
++ __task_access_unlock(p, lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++ stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
++ tlb_migrate_finish(p->mm);
++ return 0;
++ }
++ if (task_on_rq_queued(p)) {
++ /*
++ * OK, since we're going to drop the lock immediately
++ * afterwards anyway.
++ */
++ update_rq_clock(rq);
++ rq = move_queued_task(rq, p, dest_cpu);
++ lock = &rq->lock;
++ }
++
++out:
++ __task_access_unlock(p, lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++ return ret;
++}
++
++int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
++{
++ return __set_cpus_allowed_ptr(p, new_mask, false);
++}
++EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
++
++#else
++static inline int
++__set_cpus_allowed_ptr(struct task_struct *p,
++ const struct cpumask *new_mask, bool check)
++{
++ return set_cpus_allowed_ptr(p, new_mask);
++}
++#endif
++
++static u64 task_init_deadline(const struct task_struct *p)
++{
++ return task_rq(p)->clock + task_deadline_diff(p);
++}
++
++u64 (* task_init_deadline_func_tbl[])(const struct task_struct *p) = {
++ task_init_deadline, /* SCHED_NORMAL */
++ NULL, /* SCHED_FIFO */
++ NULL, /* SCHED_RR */
++ task_init_deadline, /* SCHED_BATCH */
++ NULL, /* SCHED_ISO */
++ task_init_deadline /* SCHED_IDLE */
++};
++
++/*
++ * sched_setparam() passes in -1 for its policy, to let the functions
++ * it calls know not to change it.
++ */
++#define SETPARAM_POLICY -1
++
++static void __setscheduler_params(struct task_struct *p,
++ const struct sched_attr *attr)
++{
++ int old_policy = p->policy;
++ int policy = attr->sched_policy;
++
++ if (policy == SETPARAM_POLICY)
++ policy = p->policy;
++
++ p->policy = policy;
++
++ /*
++ * allow normal nice value to be set, but will not have any
++ * effect on scheduling until the task not SCHED_NORMAL/
++ * SCHED_BATCH
++ */
++ p->static_prio = NICE_TO_PRIO(attr->sched_nice);
++
++ /*
++ * __sched_setscheduler() ensures attr->sched_priority == 0 when
++ * !rt_policy. Always setting this ensures that things like
++ * getparam()/getattr() don't report silly values for !rt tasks.
++ */
++ p->rt_priority = attr->sched_priority;
++ p->normal_prio = normal_prio(p);
++
++ if (old_policy != policy)
++ p->deadline = (task_init_deadline_func_tbl[p->policy])?
++ task_init_deadline_func_tbl[p->policy](p):0ULL;
++}
++
++/* Actually do priority change: must hold rq lock. */
++static void __setscheduler(struct rq *rq, struct task_struct *p,
++ const struct sched_attr *attr, bool keep_boost)
++{
++ __setscheduler_params(p, attr);
++
++ /*
++ * Keep a potential priority boosting if called from
++ * sched_setscheduler().
++ */
++ p->prio = normal_prio(p);
++ if (keep_boost)
++ p->prio = rt_effective_prio(p, p->prio);
++ update_task_priodl(p);
++}
++
++/*
++ * check the target process has a UID that matches the current process's
++ */
++static bool check_same_owner(struct task_struct *p)
++{
++ const struct cred *cred = current_cred(), *pcred;
++ bool match;
++
++ rcu_read_lock();
++ pcred = __task_cred(p);
++ match = (uid_eq(cred->euid, pcred->euid) ||
++ uid_eq(cred->euid, pcred->uid));
++ rcu_read_unlock();
++ return match;
++}
++
++static int
++__sched_setscheduler(struct task_struct *p,
++ const struct sched_attr *attr, bool user, bool pi)
++{
++ const struct sched_attr dl_squash_attr = {
++ .size = sizeof(struct sched_attr),
++ .sched_policy = SCHED_FIFO,
++ .sched_nice = 0,
++ .sched_priority = 99,
++ };
++ int newprio = MAX_RT_PRIO - 1 - attr->sched_priority;
++ int retval, oldpolicy = -1;
++ int policy = attr->sched_policy;
++ unsigned long flags;
++ struct rq *rq;
++ int reset_on_fork;
++ raw_spinlock_t *lock;
++
++ /* The pi code expects interrupts enabled */
++ BUG_ON(pi && in_interrupt());
++
++ /*
++ * PDS supports SCHED_DEADLINE by squash it as prio 0 SCHED_FIFO
++ */
++ if (unlikely(SCHED_DEADLINE == policy)) {
++ attr = &dl_squash_attr;
++ policy = attr->sched_policy;
++ newprio = MAX_RT_PRIO - 1 - attr->sched_priority;
++ }
++recheck:
++ /* Double check policy once rq lock held */
++ if (policy < 0) {
++ reset_on_fork = p->sched_reset_on_fork;
++ policy = oldpolicy = p->policy;
++ } else {
++ reset_on_fork = !!(attr->sched_flags & SCHED_RESET_ON_FORK);
++
++ if (policy > SCHED_IDLE)
++ return -EINVAL;
++ }
++
++ if (attr->sched_flags & ~(SCHED_FLAG_ALL))
++ return -EINVAL;
++
++ /*
++ * Valid priorities for SCHED_FIFO and SCHED_RR are
++ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
++ * SCHED_BATCH and SCHED_IDLE is 0.
++ */
++ if (attr->sched_priority < 0 ||
++ (p->mm && attr->sched_priority > MAX_USER_RT_PRIO - 1) ||
++ (!p->mm && attr->sched_priority > MAX_RT_PRIO - 1))
++ return -EINVAL;
++ if ((SCHED_RR == policy || SCHED_FIFO == policy) !=
++ (attr->sched_priority != 0))
++ return -EINVAL;
++
++ /*
++ * Allow unprivileged RT tasks to decrease priority:
++ */
++ if (user && !capable(CAP_SYS_NICE)) {
++ if (SCHED_FIFO == policy || SCHED_RR == policy) {
++ unsigned long rlim_rtprio =
++ task_rlimit(p, RLIMIT_RTPRIO);
++
++ /* Can't set/change the rt policy */
++ if (policy != p->policy && !rlim_rtprio)
++ return -EPERM;
++
++ /* Can't increase priority */
++ if (attr->sched_priority > p->rt_priority &&
++ attr->sched_priority > rlim_rtprio)
++ return -EPERM;
++ }
++
++ /* Can't change other user's priorities */
++ if (!check_same_owner(p))
++ return -EPERM;
++
++ /* Normal users shall not reset the sched_reset_on_fork flag */
++ if (p->sched_reset_on_fork && !reset_on_fork)
++ return -EPERM;
++ }
++
++ if (user) {
++ retval = security_task_setscheduler(p);
++ if (retval)
++ return retval;
++ }
++
++ /*
++ * make sure no PI-waiters arrive (or leave) while we are
++ * changing the priority of the task:
++ */
++ raw_spin_lock_irqsave(&p->pi_lock, flags);
++
++ /*
++ * To be able to change p->policy safely, task_access_lock()
++ * must be called.
++ * IF use task_access_lock() here:
++ * For the task p which is not running, reading rq->stop is
++ * racy but acceptable as ->stop doesn't change much.
++ * An enhancemnet can be made to read rq->stop saftly.
++ */
++ rq = __task_access_lock(p, &lock);
++
++ /*
++ * Changing the policy of the stop threads its a very bad idea
++ */
++ if (p == rq->stop) {
++ __task_access_unlock(p, lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++ return -EINVAL;
++ }
++
++ /*
++ * If not changing anything there's no need to proceed further:
++ */
++ if (unlikely(policy == p->policy)) {
++ if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
++ goto change;
++ if (!rt_policy(policy) &&
++ NICE_TO_PRIO(attr->sched_nice) != p->static_prio)
++ goto change;
++
++ p->sched_reset_on_fork = reset_on_fork;
++ __task_access_unlock(p, lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++ return 0;
++ }
++change:
++
++ /* Re-check policy now with rq lock held */
++ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
++ policy = oldpolicy = -1;
++ __task_access_unlock(p, lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++ goto recheck;
++ }
++
++ p->sched_reset_on_fork = reset_on_fork;
++
++ if (pi) {
++ /*
++ * Take priority boosted tasks into account. If the new
++ * effective priority is unchanged, we just store the new
++ * normal parameters and do not touch the scheduler class and
++ * the runqueue. This will be done when the task deboost
++ * itself.
++ */
++ if (rt_effective_prio(p, newprio) == p->prio) {
++ __setscheduler_params(p, attr);
++ __task_access_unlock(p, lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++ return 0;
++ }
++ }
++
++ __setscheduler(rq, p, attr, pi);
++
++ check_task_changed(rq, p);
++
++ /* Avoid rq from going away on us: */
++ preempt_disable();
++ __task_access_unlock(p, lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
++
++ if (pi)
++ rt_mutex_adjust_pi(p);
++
++ preempt_enable();
++
++ return 0;
++}
++
++static int _sched_setscheduler(struct task_struct *p, int policy,
++ const struct sched_param *param, bool check)
++{
++ struct sched_attr attr = {
++ .sched_policy = policy,
++ .sched_priority = param->sched_priority,
++ .sched_nice = PRIO_TO_NICE(p->static_prio),
++ };
++
++ /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
++ if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
++ attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
++ policy &= ~SCHED_RESET_ON_FORK;
++ attr.sched_policy = policy;
++ }
++
++ return __sched_setscheduler(p, &attr, check, true);
++}
++
++/**
++ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
++ * @p: the task in question.
++ * @policy: new policy.
++ * @param: structure containing the new RT priority.
++ *
++ * Return: 0 on success. An error code otherwise.
++ *
++ * NOTE that the task may be already dead.
++ */
++int sched_setscheduler(struct task_struct *p, int policy,
++ const struct sched_param *param)
++{
++ return _sched_setscheduler(p, policy, param, true);
++}
++
++EXPORT_SYMBOL_GPL(sched_setscheduler);
++
++int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
++{
++ return __sched_setscheduler(p, attr, true, true);
++}
++EXPORT_SYMBOL_GPL(sched_setattr);
++
++int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
++{
++ return __sched_setscheduler(p, attr, false, true);
++}
++
++/**
++ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
++ * @p: the task in question.
++ * @policy: new policy.
++ * @param: structure containing the new RT priority.
++ *
++ * Just like sched_setscheduler, only don't bother checking if the
++ * current context has permission. For example, this is needed in
++ * stop_machine(): we create temporary high priority worker threads,
++ * but our caller might not have that capability.
++ *
++ * Return: 0 on success. An error code otherwise.
++ */
++int sched_setscheduler_nocheck(struct task_struct *p, int policy,
++ const struct sched_param *param)
++{
++ return _sched_setscheduler(p, policy, param, false);
++}
++EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
++
++static int
++do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
++{
++ struct sched_param lparam;
++ struct task_struct *p;
++ int retval;
++
++ if (!param || pid < 0)
++ return -EINVAL;
++ if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
++ return -EFAULT;
++
++ rcu_read_lock();
++ retval = -ESRCH;
++ p = find_process_by_pid(pid);
++ if (p != NULL)
++ retval = sched_setscheduler(p, policy, &lparam);
++ rcu_read_unlock();
++
++ return retval;
++}
++
++/*
++ * Mimics kernel/events/core.c perf_copy_attr().
++ */
++static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
++{
++ u32 size;
++ int ret;
++
++ if (!access_ok(uattr, SCHED_ATTR_SIZE_VER0))
++ return -EFAULT;
++
++ /* Zero the full structure, so that a short copy will be nice: */
++ memset(attr, 0, sizeof(*attr));
++
++ ret = get_user(size, &uattr->size);
++ if (ret)
++ return ret;
++
++ /* Bail out on silly large: */
++ if (size > PAGE_SIZE)
++ goto err_size;
++
++ /* ABI compatibility quirk: */
++ if (!size)
++ size = SCHED_ATTR_SIZE_VER0;
++
++ if (size < SCHED_ATTR_SIZE_VER0)
++ goto err_size;
++
++ /*
++ * If we're handed a bigger struct than we know of,
++ * ensure all the unknown bits are 0 - i.e. new
++ * user-space does not rely on any kernel feature
++ * extensions we dont know about yet.
++ */
++ if (size > sizeof(*attr)) {
++ unsigned char __user *addr;
++ unsigned char __user *end;
++ unsigned char val;
++
++ addr = (void __user *)uattr + sizeof(*attr);
++ end = (void __user *)uattr + size;
++
++ for (; addr < end; addr++) {
++ ret = get_user(val, addr);
++ if (ret)
++ return ret;
++ if (val)
++ goto err_size;
++ }
++ size = sizeof(*attr);
++ }
++
++ ret = copy_from_user(attr, uattr, size);
++ if (ret)
++ return -EFAULT;
++
++ /*
++ * XXX: Do we want to be lenient like existing syscalls; or do we want
++ * to be strict and return an error on out-of-bounds values?
++ */
++ attr->sched_nice = clamp(attr->sched_nice, -20, 19);
++
++ /* sched/core.c uses zero here but we already know ret is zero */
++ return 0;
++
++err_size:
++ put_user(sizeof(*attr), &uattr->size);
++ return -E2BIG;
++}
++
++/**
++ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
++ * @pid: the pid in question.
++ * @policy: new policy.
++ *
++ * Return: 0 on success. An error code otherwise.
++ * @param: structure containing the new RT priority.
++ */
++SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
++{
++ if (policy < 0)
++ return -EINVAL;
++
++ return do_sched_setscheduler(pid, policy, param);
++}
++
++/**
++ * sys_sched_setparam - set/change the RT priority of a thread
++ * @pid: the pid in question.
++ * @param: structure containing the new RT priority.
++ *
++ * Return: 0 on success. An error code otherwise.
++ */
++SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
++{
++ return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
++}
++
++/**
++ * sys_sched_setattr - same as above, but with extended sched_attr
++ * @pid: the pid in question.
++ * @uattr: structure containing the extended parameters.
++ */
++SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
++ unsigned int, flags)
++{
++ struct sched_attr attr;
++ struct task_struct *p;
++ int retval;
++
++ if (!uattr || pid < 0 || flags)
++ return -EINVAL;
++
++ retval = sched_copy_attr(uattr, &attr);
++ if (retval)
++ return retval;
++
++ if ((int)attr.sched_policy < 0)
++ return -EINVAL;
++
++ rcu_read_lock();
++ retval = -ESRCH;
++ p = find_process_by_pid(pid);
++ if (p != NULL)
++ retval = sched_setattr(p, &attr);
++ rcu_read_unlock();
++
++ return retval;
++}
++
++/**
++ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
++ * @pid: the pid in question.
++ *
++ * Return: On success, the policy of the thread. Otherwise, a negative error
++ * code.
++ */
++SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
++{
++ struct task_struct *p;
++ int retval = -EINVAL;
++
++ if (pid < 0)
++ goto out_nounlock;
++
++ retval = -ESRCH;
++ rcu_read_lock();
++ p = find_process_by_pid(pid);
++ if (p) {
++ retval = security_task_getscheduler(p);
++ if (!retval)
++ retval = p->policy;
++ }
++ rcu_read_unlock();
++
++out_nounlock:
++ return retval;
++}
++
++/**
++ * sys_sched_getscheduler - get the RT priority of a thread
++ * @pid: the pid in question.
++ * @param: structure containing the RT priority.
++ *
++ * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
++ * code.
++ */
++SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
++{
++ struct sched_param lp = { .sched_priority = 0 };
++ struct task_struct *p;
++ int retval = -EINVAL;
++
++ if (!param || pid < 0)
++ goto out_nounlock;
++
++ rcu_read_lock();
++ p = find_process_by_pid(pid);
++ retval = -ESRCH;
++ if (!p)
++ goto out_unlock;
++
++ retval = security_task_getscheduler(p);
++ if (retval)
++ goto out_unlock;
++
++ if (task_has_rt_policy(p))
++ lp.sched_priority = p->rt_priority;
++ rcu_read_unlock();
++
++ /*
++ * This one might sleep, we cannot do it with a spinlock held ...
++ */
++ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
++
++out_nounlock:
++ return retval;
++
++out_unlock:
++ rcu_read_unlock();
++ return retval;
++}
++
++static int sched_read_attr(struct sched_attr __user *uattr,
++ struct sched_attr *attr,
++ unsigned int usize)
++{
++ int ret;
++
++ if (!access_ok(uattr, usize))
++ return -EFAULT;
++
++ /*
++ * If we're handed a smaller struct than we know of,
++ * ensure all the unknown bits are 0 - i.e. old
++ * user-space does not get uncomplete information.
++ */
++ if (usize < sizeof(*attr)) {
++ unsigned char *addr;
++ unsigned char *end;
++
++ addr = (void *)attr + usize;
++ end = (void *)attr + sizeof(*attr);
++
++ for (; addr < end; addr++) {
++ if (*addr)
++ return -EFBIG;
++ }
++
++ attr->size = usize;
++ }
++
++ ret = copy_to_user(uattr, attr, attr->size);
++ if (ret)
++ return -EFAULT;
++
++ /* sched/core.c uses zero here but we already know ret is zero */
++ return ret;
++}
++
++/**
++ * sys_sched_getattr - similar to sched_getparam, but with sched_attr
++ * @pid: the pid in question.
++ * @uattr: structure containing the extended parameters.
++ * @size: sizeof(attr) for fwd/bwd comp.
++ * @flags: for future extension.
++ */
++SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
++ unsigned int, size, unsigned int, flags)
++{
++ struct sched_attr attr = {
++ .size = sizeof(struct sched_attr),
++ };
++ struct task_struct *p;
++ int retval;
++
++ if (!uattr || pid < 0 || size > PAGE_SIZE ||
++ size < SCHED_ATTR_SIZE_VER0 || flags)
++ return -EINVAL;
++
++ rcu_read_lock();
++ p = find_process_by_pid(pid);
++ retval = -ESRCH;
++ if (!p)
++ goto out_unlock;
++
++ retval = security_task_getscheduler(p);
++ if (retval)
++ goto out_unlock;
++
++ attr.sched_policy = p->policy;
++ if (rt_task(p))
++ attr.sched_priority = p->rt_priority;
++ else
++ attr.sched_nice = task_nice(p);
++
++ rcu_read_unlock();
++
++ retval = sched_read_attr(uattr, &attr, size);
++ return retval;
++
++out_unlock:
++ rcu_read_unlock();
++ return retval;
++}
++
++long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
++{
++ cpumask_var_t cpus_allowed, new_mask;
++ struct task_struct *p;
++ int retval;
++
++ get_online_cpus();
++ rcu_read_lock();
++
++ p = find_process_by_pid(pid);
++ if (!p) {
++ rcu_read_unlock();
++ put_online_cpus();
++ return -ESRCH;
++ }
++
++ /* Prevent p going away */
++ get_task_struct(p);
++ rcu_read_unlock();
++
++ if (p->flags & PF_NO_SETAFFINITY) {
++ retval = -EINVAL;
++ goto out_put_task;
++ }
++ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
++ retval = -ENOMEM;
++ goto out_put_task;
++ }
++ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
++ retval = -ENOMEM;
++ goto out_free_cpus_allowed;
++ }
++ retval = -EPERM;
++ if (!check_same_owner(p)) {
++ rcu_read_lock();
++ if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
++ rcu_read_unlock();
++ goto out_unlock;
++ }
++ rcu_read_unlock();
++ }
++
++ retval = security_task_setscheduler(p);
++ if (retval)
++ goto out_unlock;
++
++ cpuset_cpus_allowed(p, cpus_allowed);
++ cpumask_and(new_mask, in_mask, cpus_allowed);
++again:
++ retval = __set_cpus_allowed_ptr(p, new_mask, true);
++
++ if (!retval) {
++ cpuset_cpus_allowed(p, cpus_allowed);
++ if (!cpumask_subset(new_mask, cpus_allowed)) {
++ /*
++ * We must have raced with a concurrent cpuset
++ * update. Just reset the cpus_allowed to the
++ * cpuset's cpus_allowed
++ */
++ cpumask_copy(new_mask, cpus_allowed);
++ goto again;
++ }
++ }
++out_unlock:
++ free_cpumask_var(new_mask);
++out_free_cpus_allowed:
++ free_cpumask_var(cpus_allowed);
++out_put_task:
++ put_task_struct(p);
++ put_online_cpus();
++ return retval;
++}
++
++static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
++ struct cpumask *new_mask)
++{
++ if (len < cpumask_size())
++ cpumask_clear(new_mask);
++ else if (len > cpumask_size())
++ len = cpumask_size();
++
++ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
++}
++
++/**
++ * sys_sched_setaffinity - set the CPU affinity of a process
++ * @pid: pid of the process
++ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
++ * @user_mask_ptr: user-space pointer to the new CPU mask
++ *
++ * Return: 0 on success. An error code otherwise.
++ */
++SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
++ unsigned long __user *, user_mask_ptr)
++{
++ cpumask_var_t new_mask;
++ int retval;
++
++ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
++ return -ENOMEM;
++
++ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
++ if (retval == 0)
++ retval = sched_setaffinity(pid, new_mask);
++ free_cpumask_var(new_mask);
++ return retval;
++}
++
++long sched_getaffinity(pid_t pid, cpumask_t *mask)
++{
++ struct task_struct *p;
++ raw_spinlock_t *lock;
++ unsigned long flags;
++ int retval;
++
++ rcu_read_lock();
++
++ retval = -ESRCH;
++ p = find_process_by_pid(pid);
++ if (!p)
++ goto out_unlock;
++
++ retval = security_task_getscheduler(p);
++ if (retval)
++ goto out_unlock;
++
++ task_access_lock_irqsave(p, &lock, &flags);
++ cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
++ task_access_unlock_irqrestore(p, lock, &flags);
++
++out_unlock:
++ rcu_read_unlock();
++
++ return retval;
++}
++
++/**
++ * sys_sched_getaffinity - get the CPU affinity of a process
++ * @pid: pid of the process
++ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
++ * @user_mask_ptr: user-space pointer to hold the current CPU mask
++ *
++ * Return: size of CPU mask copied to user_mask_ptr on success. An
++ * error code otherwise.
++ */
++SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
++ unsigned long __user *, user_mask_ptr)
++{
++ int ret;
++ cpumask_var_t mask;
++
++ if ((len * BITS_PER_BYTE) < nr_cpu_ids)
++ return -EINVAL;
++ if (len & (sizeof(unsigned long)-1))
++ return -EINVAL;
++
++ if (!alloc_cpumask_var(&mask, GFP_KERNEL))
++ return -ENOMEM;
++
++ ret = sched_getaffinity(pid, mask);
++ if (ret == 0) {
++ unsigned int retlen = min_t(size_t, len, cpumask_size());
++
++ if (copy_to_user(user_mask_ptr, mask, retlen))
++ ret = -EFAULT;
++ else
++ ret = retlen;
++ }
++ free_cpumask_var(mask);
++
++ return ret;
++}
++
++/**
++ * sys_sched_yield - yield the current processor to other threads.
++ *
++ * This function yields the current CPU to other tasks. It does this by
++ * scheduling away the current task. If it still has the earliest deadline
++ * it will be scheduled again as the next task.
++ *
++ * Return: 0.
++ */
++static void do_sched_yield(void)
++{
++ struct rq *rq;
++ struct rq_flags rf;
++
++ if (!sched_yield_type)
++ return;
++
++ rq = this_rq_lock_irq(&rf);
++
++ if (sched_yield_type > 1) {
++ time_slice_expired(current, rq);
++ requeue_task(current, rq);
++ }
++ schedstat_inc(rq->yld_count);
++
++ /*
++ * Since we are going to call schedule() anyway, there's
++ * no need to preempt or enable interrupts:
++ */
++ preempt_disable();
++ raw_spin_unlock(&rq->lock);
++ sched_preempt_enable_no_resched();
++
++ schedule();
++}
++
++SYSCALL_DEFINE0(sched_yield)
++{
++ do_sched_yield();
++ return 0;
++}
++
++#ifndef CONFIG_PREEMPT
++int __sched _cond_resched(void)
++{
++ if (should_resched(0)) {
++ preempt_schedule_common();
++ return 1;
++ }
++ rcu_all_qs();
++ return 0;
++}
++EXPORT_SYMBOL(_cond_resched);
++#endif
++
++/*
++ * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
++ * call schedule, and on return reacquire the lock.
++ *
++ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
++ * operations here to prevent schedule() from being called twice (once via
++ * spin_unlock(), once by hand).
++ */
++int __cond_resched_lock(spinlock_t *lock)
++{
++ int resched = should_resched(PREEMPT_LOCK_OFFSET);
++ int ret = 0;
++
++ lockdep_assert_held(lock);
++
++ if (spin_needbreak(lock) || resched) {
++ spin_unlock(lock);
++ if (resched)
++ preempt_schedule_common();
++ else
++ cpu_relax();
++ ret = 1;
++ spin_lock(lock);
++ }
++ return ret;
++}
++EXPORT_SYMBOL(__cond_resched_lock);
++
++/**
++ * yield - yield the current processor to other threads.
++ *
++ * Do not ever use this function, there's a 99% chance you're doing it wrong.
++ *
++ * The scheduler is at all times free to pick the calling task as the most
++ * eligible task to run, if removing the yield() call from your code breaks
++ * it, its already broken.
++ *
++ * Typical broken usage is:
++ *
++ * while (!event)
++ * yield();
++ *
++ * where one assumes that yield() will let 'the other' process run that will
++ * make event true. If the current task is a SCHED_FIFO task that will never
++ * happen. Never use yield() as a progress guarantee!!
++ *
++ * If you want to use yield() to wait for something, use wait_event().
++ * If you want to use yield() to be 'nice' for others, use cond_resched().
++ * If you still want to use yield(), do not!
++ */
++void __sched yield(void)
++{
++ set_current_state(TASK_RUNNING);
++ do_sched_yield();
++}
++EXPORT_SYMBOL(yield);
++
++/**
++ * yield_to - yield the current processor to another thread in
++ * your thread group, or accelerate that thread toward the
++ * processor it's on.
++ * @p: target task
++ * @preempt: whether task preemption is allowed or not
++ *
++ * It's the caller's job to ensure that the target task struct
++ * can't go away on us before we can do any checks.
++ *
++ * In PDS, yield_to is not supported.
++ *
++ * Return:
++ * true (>0) if we indeed boosted the target task.
++ * false (0) if we failed to boost the target.
++ * -ESRCH if there's no task to yield to.
++ */
++int __sched yield_to(struct task_struct *p, bool preempt)
++{
++ return 0;
++}
++EXPORT_SYMBOL_GPL(yield_to);
++
++int io_schedule_prepare(void)
++{
++ int old_iowait = current->in_iowait;
++
++ current->in_iowait = 1;
++ blk_schedule_flush_plug(current);
++
++ return old_iowait;
++}
++
++void io_schedule_finish(int token)
++{
++ current->in_iowait = token;
++}
++
++/*
++ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
++ * that process accounting knows that this is a task in IO wait state.
++ *
++ * But don't do that if it is a deliberate, throttling IO wait (this task
++ * has set its backing_dev_info: the queue against which it should throttle)
++ */
++
++long __sched io_schedule_timeout(long timeout)
++{
++ int token;
++ long ret;
++
++ token = io_schedule_prepare();
++ ret = schedule_timeout(timeout);
++ io_schedule_finish(token);
++
++ return ret;
++}
++EXPORT_SYMBOL(io_schedule_timeout);
++
++void io_schedule(void)
++{
++ int token;
++
++ token = io_schedule_prepare();
++ schedule();
++ io_schedule_finish(token);
++}
++EXPORT_SYMBOL(io_schedule);
++
++/**
++ * sys_sched_get_priority_max - return maximum RT priority.
++ * @policy: scheduling class.
++ *
++ * Return: On success, this syscall returns the maximum
++ * rt_priority that can be used by a given scheduling class.
++ * On failure, a negative error code is returned.
++ */
++SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
++{
++ int ret = -EINVAL;
++
++ switch (policy) {
++ case SCHED_FIFO:
++ case SCHED_RR:
++ ret = MAX_USER_RT_PRIO-1;
++ break;
++ case SCHED_NORMAL:
++ case SCHED_BATCH:
++ case SCHED_ISO:
++ case SCHED_IDLE:
++ ret = 0;
++ break;
++ }
++ return ret;
++}
++
++/**
++ * sys_sched_get_priority_min - return minimum RT priority.
++ * @policy: scheduling class.
++ *
++ * Return: On success, this syscall returns the minimum
++ * rt_priority that can be used by a given scheduling class.
++ * On failure, a negative error code is returned.
++ */
++SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
++{
++ int ret = -EINVAL;
++
++ switch (policy) {
++ case SCHED_FIFO:
++ case SCHED_RR:
++ ret = 1;
++ break;
++ case SCHED_NORMAL:
++ case SCHED_BATCH:
++ case SCHED_ISO:
++ case SCHED_IDLE:
++ ret = 0;
++ break;
++ }
++ return ret;
++}
++
++static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
++{
++ struct task_struct *p;
++ int retval;
++
++ if (pid < 0)
++ return -EINVAL;
++
++ retval = -ESRCH;
++ rcu_read_lock();
++ p = find_process_by_pid(pid);
++ if (!p)
++ goto out_unlock;
++
++ retval = security_task_getscheduler(p);
++ if (retval)
++ goto out_unlock;
++ rcu_read_unlock();
++
++ *t = ns_to_timespec64(MS_TO_NS(rr_interval));
++ return 0;
++
++out_unlock:
++ rcu_read_unlock();
++ return retval;
++}
++
++/**
++ * sys_sched_rr_get_interval - return the default timeslice of a process.
++ * @pid: pid of the process.
++ * @interval: userspace pointer to the timeslice value.
++ *
++ *
++ * Return: On success, 0 and the timeslice is in @interval. Otherwise,
++ * an error code.
++ */
++SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
++ struct __kernel_timespec __user *, interval)
++{
++ struct timespec64 t;
++ int retval = sched_rr_get_interval(pid, &t);
++
++ if (retval == 0)
++ retval = put_timespec64(&t, interval);
++
++ return retval;
++}
++
++#ifdef CONFIG_COMPAT_32BIT_TIME
++SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
++ struct old_timespec32 __user *, interval)
++{
++ struct timespec64 t;
++ int retval = sched_rr_get_interval(pid, &t);
++
++ if (retval == 0)
++ retval = put_old_timespec32(&t, interval);
++ return retval;
++}
++#endif
++
++void sched_show_task(struct task_struct *p)
++{
++ unsigned long free = 0;
++ int ppid;
++
++ if (!try_get_task_stack(p))
++ return;
++
++ printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
++
++ if (p->state == TASK_RUNNING)
++ printk(KERN_CONT " running task ");
++#ifdef CONFIG_DEBUG_STACK_USAGE
++ free = stack_not_used(p);
++#endif
++ ppid = 0;
++ rcu_read_lock();
++ if (pid_alive(p))
++ ppid = task_pid_nr(rcu_dereference(p->real_parent));
++ rcu_read_unlock();
++ printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
++ task_pid_nr(p), ppid,
++ (unsigned long)task_thread_info(p)->flags);
++
++ print_worker_info(KERN_INFO, p);
++ show_stack(p, NULL);
++ put_task_stack(p);
++}
++EXPORT_SYMBOL_GPL(sched_show_task);
++
++static inline bool
++state_filter_match(unsigned long state_filter, struct task_struct *p)
++{
++ /* no filter, everything matches */
++ if (!state_filter)
++ return true;
++
++ /* filter, but doesn't match */
++ if (!(p->state & state_filter))
++ return false;
++
++ /*
++ * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
++ * TASK_KILLABLE).
++ */
++ if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
++ return false;
++
++ return true;
++}
++
++
++void show_state_filter(unsigned long state_filter)
++{
++ struct task_struct *g, *p;
++
++#if BITS_PER_LONG == 32
++ printk(KERN_INFO
++ " task PC stack pid father\n");
++#else
++ printk(KERN_INFO
++ " task PC stack pid father\n");
++#endif
++ rcu_read_lock();
++ for_each_process_thread(g, p) {
++ /*
++ * reset the NMI-timeout, listing all files on a slow
++ * console might take a lot of time:
++ * Also, reset softlockup watchdogs on all CPUs, because
++ * another CPU might be blocked waiting for us to process
++ * an IPI.
++ */
++ touch_nmi_watchdog();
++ touch_all_softlockup_watchdogs();
++ if (state_filter_match(state_filter, p))
++ sched_show_task(p);
++ }
++
++#ifdef CONFIG_SCHED_DEBUG
++ /* PDS TODO: should support this
++ if (!state_filter)
++ sysrq_sched_debug_show();
++ */
++#endif
++ rcu_read_unlock();
++ /*
++ * Only show locks if all tasks are dumped:
++ */
++ if (!state_filter)
++ debug_show_all_locks();
++}
++
++void dump_cpu_task(int cpu)
++{
++ pr_info("Task dump for CPU %d:\n", cpu);
++ sched_show_task(cpu_curr(cpu));
++}
++
++/**
++ * init_idle - set up an idle thread for a given CPU
++ * @idle: task in question
++ * @cpu: cpu the idle task belongs to
++ *
++ * NOTE: this function does not set the idle thread's NEED_RESCHED
++ * flag, to make booting more robust.
++ */
++void init_idle(struct task_struct *idle, int cpu)
++{
++ struct rq *rq = cpu_rq(cpu);
++ unsigned long flags;
++
++ raw_spin_lock_irqsave(&idle->pi_lock, flags);
++ raw_spin_lock(&rq->lock);
++ update_rq_clock(rq);
++
++ idle->last_ran = rq->clock_task;
++ idle->state = TASK_RUNNING;
++ idle->flags |= PF_IDLE;
++ /* Setting prio to illegal value shouldn't matter when never queued */
++ idle->prio = PRIO_LIMIT;
++ idle->deadline = rq_clock(rq) + task_deadline_diff(idle);
++ update_task_priodl(idle);
++
++ kasan_unpoison_task_stack(idle);
++
++#ifdef CONFIG_SMP
++ /*
++ * It's possible that init_idle() gets called multiple times on a task,
++ * in that case do_set_cpus_allowed() will not do the right thing.
++ *
++ * And since this is boot we can forgo the serialisation.
++ */
++ set_cpus_allowed_common(idle, cpumask_of(cpu));
++#endif
++
++ /* Silence PROVE_RCU */
++ rcu_read_lock();
++ __set_task_cpu(idle, cpu);
++ rcu_read_unlock();
++
++ rq->curr = rq->idle = idle;
++ idle->on_cpu = 1;
++
++ raw_spin_unlock(&rq->lock);
++ raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
++
++ /* Set the preempt count _outside_ the spinlocks! */
++ init_idle_preempt_count(idle, cpu);
++
++ ftrace_graph_init_idle_task(idle, cpu);
++ vtime_init_idle(idle, cpu);
++#ifdef CONFIG_SMP
++ sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
++#endif
++}
++
++void resched_cpu(int cpu)
++{
++ struct rq *rq = cpu_rq(cpu);
++ unsigned long flags;
++
++ raw_spin_lock_irqsave(&rq->lock, flags);
++ if (cpu_online(cpu) || cpu == smp_processor_id())
++ resched_curr(cpu_rq(cpu));
++ raw_spin_unlock_irqrestore(&rq->lock, flags);
++}
++
++static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
++{
++ struct wake_q_node *node = &task->wake_q;
++
++ /*
++ * Atomically grab the task, if ->wake_q is !nil already it means
++ * its already queued (either by us or someone else) and will get the
++ * wakeup due to that.
++ *
++ * In order to ensure that a pending wakeup will observe our pending
++ * state, even in the failed case, an explicit smp_mb() must be used.
++ */
++ smp_mb__before_atomic();
++ if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
++ return false;
++
++ /*
++ * The head is context local, there can be no concurrency.
++ */
++ *head->lastp = node;
++ head->lastp = &node->next;
++ return true;
++}
++
++/**
++ * wake_q_add() - queue a wakeup for 'later' waking.
++ * @head: the wake_q_head to add @task to
++ * @task: the task to queue for 'later' wakeup
++ *
++ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
++ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
++ * instantly.
++ *
++ * This function must be used as-if it were wake_up_process(); IOW the task
++ * must be ready to be woken at this location.
++ */
++void wake_q_add(struct wake_q_head *head, struct task_struct *task)
++{
++ if (__wake_q_add(head, task))
++ get_task_struct(task);
++}
++
++/**
++ * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
++ * @head: the wake_q_head to add @task to
++ * @task: the task to queue for 'later' wakeup
++ *
++ * Queue a task for later wakeup, most likely by the wake_up_q() call in the
++ * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
++ * instantly.
++ *
++ * This function must be used as-if it were wake_up_process(); IOW the task
++ * must be ready to be woken at this location.
++ *
++ * This function is essentially a task-safe equivalent to wake_q_add(). Callers
++ * that already hold reference to @task can call the 'safe' version and trust
++ * wake_q to do the right thing depending whether or not the @task is already
++ * queued for wakeup.
++ */
++void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
++{
++ if (!__wake_q_add(head, task))
++ put_task_struct(task);
++}
++
++void wake_up_q(struct wake_q_head *head)
++{
++ struct wake_q_node *node = head->first;
++
++ while (node != WAKE_Q_TAIL) {
++ struct task_struct *task;
++
++ task = container_of(node, struct task_struct, wake_q);
++ BUG_ON(!task);
++ /* task can safely be re-inserted now: */
++ node = node->next;
++ task->wake_q.next = NULL;
++
++ /*
++ * wake_up_process() executes a full barrier, which pairs with
++ * the queueing in wake_q_add() so as not to miss wakeups.
++ */
++ wake_up_process(task);
++ put_task_struct(task);
++ }
++}
++
++#ifdef CONFIG_SMP
++
++int cpuset_cpumask_can_shrink(const struct cpumask __maybe_unused *cur,
++ const struct cpumask __maybe_unused *trial)
++{
++ return 1;
++}
++
++int task_can_attach(struct task_struct *p,
++ const struct cpumask *cs_cpus_allowed)
++{
++ int ret = 0;
++
++ /*
++ * Kthreads which disallow setaffinity shouldn't be moved
++ * to a new cpuset; we don't want to change their CPU
++ * affinity and isolating such threads by their set of
++ * allowed nodes is unnecessary. Thus, cpusets are not
++ * applicable for such threads. This prevents checking for
++ * success of set_cpus_allowed_ptr() on all attached tasks
++ * before cpus_allowed may be changed.
++ */
++ if (p->flags & PF_NO_SETAFFINITY)
++ ret = -EINVAL;
++
++ return ret;
++}
++
++static bool sched_smp_initialized __read_mostly;
++
++#ifdef CONFIG_NO_HZ_COMMON
++void nohz_balance_enter_idle(int cpu)
++{
++}
++
++void select_nohz_load_balancer(int stop_tick)
++{
++}
++
++void set_cpu_sd_state_idle(void) {}
++
++/*
++ * In the semi idle case, use the nearest busy CPU for migrating timers
++ * from an idle CPU. This is good for power-savings.
++ *
++ * We don't do similar optimization for completely idle system, as
++ * selecting an idle CPU will add more delays to the timers than intended
++ * (as that CPU's timer base may not be uptodate wrt jiffies etc).
++ */
++int get_nohz_timer_target(void)
++{
++ int i, cpu = smp_processor_id();
++ struct cpumask *mask;
++
++ if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
++ return cpu;
++
++ for (mask = &(per_cpu(sched_cpu_affinity_chk_masks, cpu)[0]);
++ mask < per_cpu(sched_cpu_affinity_chk_end_masks, cpu); mask++)
++ for_each_cpu(i, mask)
++ if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER))
++ return i;
++
++ if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
++ cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
++
++ return cpu;
++}
++
++/*
++ * When add_timer_on() enqueues a timer into the timer wheel of an
++ * idle CPU then this timer might expire before the next timer event
++ * which is scheduled to wake up that CPU. In case of a completely
++ * idle system the next event might even be infinite time into the
++ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
++ * leaves the inner idle loop so the newly added timer is taken into
++ * account when the CPU goes back to idle and evaluates the timer
++ * wheel for the next timer event.
++ */
++void wake_up_idle_cpu(int cpu)
++{
++ if (cpu == smp_processor_id())
++ return;
++
++ set_tsk_need_resched(cpu_rq(cpu)->idle);
++ smp_send_reschedule(cpu);
++}
++
++void wake_up_nohz_cpu(int cpu)
++{
++ wake_up_idle_cpu(cpu);
++}
++#endif /* CONFIG_NO_HZ_COMMON */
++
++#ifdef CONFIG_HOTPLUG_CPU
++/*
++ * Ensures that the idle task is using init_mm right before its CPU goes
++ * offline.
++ */
++void idle_task_exit(void)
++{
++ struct mm_struct *mm = current->active_mm;
++
++ BUG_ON(cpu_online(smp_processor_id()));
++
++ if (mm != &init_mm) {
++ switch_mm(mm, &init_mm, current);
++ current->active_mm = &init_mm;
++ finish_arch_post_lock_switch();
++ }
++ mmdrop(mm);
++}
++
++/*
++ * Migrate all tasks from the rq, sleeping tasks will be migrated by
++ * try_to_wake_up()->select_task_rq().
++ *
++ * Called with rq->lock held even though we'er in stop_machine() and
++ * there's no concurrency possible, we hold the required locks anyway
++ * because of lock validation efforts.
++ */
++static void migrate_tasks(struct rq *dead_rq)
++{
++ struct rq *rq = dead_rq;
++ struct task_struct *p, *stop = rq->stop;
++ struct skiplist_node *node;
++ int count = 0;
++
++ /*
++ * Fudge the rq selection such that the below task selection loop
++ * doesn't get stuck on the currently eligible stop task.
++ *
++ * We're currently inside stop_machine() and the rq is either stuck
++ * in the stop_machine_cpu_stop() loop, or we're executing this code,
++ * either way we should never end up calling schedule() until we're
++ * done here.
++ */
++ rq->stop = NULL;
++
++ node = &rq->sl_header;
++ while ((node = node->next[0]) != &rq->sl_header) {
++ int dest_cpu;
++
++ p = skiplist_entry(node, struct task_struct, sl_node);
++
++ /* skip the running task */
++ if (task_running(p))
++ continue;
++
++ /*
++ * Rules for changing task_struct::cpus_allowed are holding
++ * both pi_lock and rq->lock, such that holding either
++ * stabilizes the mask.
++ *
++ * Drop rq->lock is not quite as disastrous as it usually is
++ * because !cpu_active at this point, which means load-balance
++ * will not interfere. Also, stop-machine.
++ */
++ raw_spin_unlock(&rq->lock);
++ raw_spin_lock(&p->pi_lock);
++ raw_spin_lock(&rq->lock);
++
++ /*
++ * Since we're inside stop-machine, _nothing_ should have
++ * changed the task, WARN if weird stuff happened, because in
++ * that case the above rq->lock drop is a fail too.
++ */
++ if (WARN_ON(task_rq(p) != rq || !task_on_rq_queued(p))) {
++ raw_spin_unlock(&p->pi_lock);
++ continue;
++ }
++
++ count++;
++ /* Find suitable destination for @next, with force if needed. */
++ dest_cpu = select_fallback_rq(dead_rq->cpu, p);
++
++ rq = __migrate_task(rq, p, dest_cpu);
++ raw_spin_unlock(&rq->lock);
++ raw_spin_unlock(&p->pi_lock);
++
++ rq = dead_rq;
++ raw_spin_lock(&rq->lock);
++ /* Check queued task all over from the header again */
++ node = &rq->sl_header;
++ }
++
++ rq->stop = stop;
++}
++
++static void set_rq_offline(struct rq *rq)
++{
++ if (rq->online)
++ rq->online = false;
++}
++#endif /* CONFIG_HOTPLUG_CPU */
++
++static void set_rq_online(struct rq *rq)
++{
++ if (!rq->online)
++ rq->online = true;
++}
++
++#ifdef CONFIG_SCHED_DEBUG
++
++static __read_mostly int sched_debug_enabled;
++
++static int __init sched_debug_setup(char *str)
++{
++ sched_debug_enabled = 1;
++
++ return 0;
++}
++early_param("sched_debug", sched_debug_setup);
++
++static inline bool sched_debug(void)
++{
++ return sched_debug_enabled;
++}
++#else /* !CONFIG_SCHED_DEBUG */
++static inline bool sched_debug(void)
++{
++ return false;
++}
++#endif /* CONFIG_SCHED_DEBUG */
++
++#ifdef CONFIG_SMP
++void scheduler_ipi(void)
++{
++ /*
++ * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
++ * TIF_NEED_RESCHED remotely (for the first time) will also send
++ * this IPI.
++ */
++ preempt_fold_need_resched();
++
++ if (!idle_cpu(smp_processor_id()) || need_resched())
++ return;
++
++ irq_enter();
++ irq_exit();
++}
++
++void wake_up_if_idle(int cpu)
++{
++ struct rq *rq = cpu_rq(cpu);
++ unsigned long flags;
++
++ rcu_read_lock();
++
++ if (!is_idle_task(rcu_dereference(rq->curr)))
++ goto out;
++
++ if (set_nr_if_polling(rq->idle)) {
++ trace_sched_wake_idle_without_ipi(cpu);
++ } else {
++ raw_spin_lock_irqsave(&rq->lock, flags);
++ if (is_idle_task(rq->curr))
++ smp_send_reschedule(cpu);
++ /* Else CPU is not idle, do nothing here */
++ raw_spin_unlock_irqrestore(&rq->lock, flags);
++ }
++
++out:
++ rcu_read_unlock();
++}
++
++bool cpus_share_cache(int this_cpu, int that_cpu)
++{
++ return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
++}
++#endif /* CONFIG_SMP */
++
++/*
++ * Topology list, bottom-up.
++ */
++static struct sched_domain_topology_level default_topology[] = {
++#ifdef CONFIG_SCHED_SMT
++ { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
++#endif
++#ifdef CONFIG_SCHED_MC
++ { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
++#endif
++ { cpu_cpu_mask, SD_INIT_NAME(DIE) },
++ { NULL, },
++};
++
++static struct sched_domain_topology_level *sched_domain_topology =
++ default_topology;
++
++#define for_each_sd_topology(tl) \
++ for (tl = sched_domain_topology; tl->mask; tl++)
++
++void set_sched_topology(struct sched_domain_topology_level *tl)
++{
++ if (WARN_ON_ONCE(sched_smp_initialized))
++ return;
++
++ sched_domain_topology = tl;
++}
++
++/*
++ * Initializers for schedule domains
++ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
++ */
++
++int sched_domain_level_max;
++
++/*
++ * Partition sched domains as specified by the 'ndoms_new'
++ * cpumasks in the array doms_new[] of cpumasks. This compares
++ * doms_new[] to the current sched domain partitioning, doms_cur[].
++ * It destroys each deleted domain and builds each new domain.
++ *
++ * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
++ * The masks don't intersect (don't overlap.) We should setup one
++ * sched domain for each mask. CPUs not in any of the cpumasks will
++ * not be load balanced. If the same cpumask appears both in the
++ * current 'doms_cur' domains and in the new 'doms_new', we can leave
++ * it as it is.
++ *
++ * The passed in 'doms_new' should be allocated using
++ * alloc_sched_domains. This routine takes ownership of it and will
++ * free_sched_domains it when done with it. If the caller failed the
++ * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
++ * and partition_sched_domains() will fallback to the single partition
++ * 'fallback_doms', it also forces the domains to be rebuilt.
++ *
++ * If doms_new == NULL it will be replaced with cpu_online_mask.
++ * ndoms_new == 0 is a special case for destroying existing domains,
++ * and it will not create the default domain.
++ *
++ * Call with hotplug lock held
++ */
++void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
++ struct sched_domain_attr *dattr_new)
++{
++ /**
++ * PDS doesn't depend on sched domains, but just keep this api
++ */
++}
++
++/*
++ * used to mark begin/end of suspend/resume:
++ */
++static int num_cpus_frozen;
++
++/*
++ * Update cpusets according to cpu_active mask. If cpusets are
++ * disabled, cpuset_update_active_cpus() becomes a simple wrapper
++ * around partition_sched_domains().
++ *
++ * If we come here as part of a suspend/resume, don't touch cpusets because we
++ * want to restore it back to its original state upon resume anyway.
++ */
++static void cpuset_cpu_active(void)
++{
++ if (cpuhp_tasks_frozen) {
++ /*
++ * num_cpus_frozen tracks how many CPUs are involved in suspend
++ * resume sequence. As long as this is not the last online
++ * operation in the resume sequence, just build a single sched
++ * domain, ignoring cpusets.
++ */
++ partition_sched_domains(1, NULL, NULL);
++ if (--num_cpus_frozen)
++ return;
++ /*
++ * This is the last CPU online operation. So fall through and
++ * restore the original sched domains by considering the
++ * cpuset configurations.
++ */
++ cpuset_force_rebuild();
++ }
++
++ cpuset_update_active_cpus();
++}
++
++static int cpuset_cpu_inactive(unsigned int cpu)
++{
++ if (!cpuhp_tasks_frozen) {
++ cpuset_update_active_cpus();
++ } else {
++ num_cpus_frozen++;
++ partition_sched_domains(1, NULL, NULL);
++ }
++ return 0;
++}
++
++int sched_cpu_activate(unsigned int cpu)
++{
++ struct rq *rq = cpu_rq(cpu);
++ unsigned long flags;
++
++#ifdef CONFIG_SCHED_SMT
++ /*
++ * When going up, increment the number of cores with SMT present.
++ */
++ if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
++ static_branch_inc_cpuslocked(&sched_smt_present);
++#endif
++ set_cpu_active(cpu, true);
++
++ if (sched_smp_initialized)
++ cpuset_cpu_active();
++
++ /*
++ * Put the rq online, if not already. This happens:
++ *
++ * 1) In the early boot process, because we build the real domains
++ * after all cpus have been brought up.
++ *
++ * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
++ * domains.
++ */
++ raw_spin_lock_irqsave(&rq->lock, flags);
++ set_rq_online(rq);
++ raw_spin_unlock_irqrestore(&rq->lock, flags);
++
++ return 0;
++}
++
++int sched_cpu_deactivate(unsigned int cpu)
++{
++ int ret;
++
++ set_cpu_active(cpu, false);
++ /*
++ * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
++ * users of this state to go away such that all new such users will
++ * observe it.
++ *
++ * Do sync before park smpboot threads to take care the rcu boost case.
++ */
++ synchronize_rcu();
++
++#ifdef CONFIG_SCHED_SMT
++ /*
++ * When going down, decrement the number of cores with SMT present.
++ */
++ if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
++ static_branch_dec_cpuslocked(&sched_smt_present);
++#endif
++
++ if (!sched_smp_initialized)
++ return 0;
++
++ ret = cpuset_cpu_inactive(cpu);
++ if (ret) {
++ set_cpu_active(cpu, true);
++ return ret;
++ }
++ return 0;
++}
++
++static void sched_rq_cpu_starting(unsigned int cpu)
++{
++ struct rq *rq = cpu_rq(cpu);
++
++ rq->calc_load_update = calc_load_update;
++}
++
++int sched_cpu_starting(unsigned int cpu)
++{
++ sched_rq_cpu_starting(cpu);
++ sched_tick_start(cpu);
++ return 0;
++}
++
++#ifdef CONFIG_HOTPLUG_CPU
++int sched_cpu_dying(unsigned int cpu)
++{
++ struct rq *rq = cpu_rq(cpu);
++ unsigned long flags;
++
++ sched_tick_stop(cpu);
++ raw_spin_lock_irqsave(&rq->lock, flags);
++ set_rq_offline(rq);
++ migrate_tasks(rq);
++ raw_spin_unlock_irqrestore(&rq->lock, flags);
++
++ hrtick_clear(rq);
++ return 0;
++}
++#endif
++
++#ifdef CONFIG_SMP
++static void sched_init_topology_cpumask_early(void)
++{
++ int cpu, level;
++ cpumask_t *tmp;
++
++ for_each_possible_cpu(cpu) {
++ for (level = 0; level < NR_CPU_AFFINITY_CHK_LEVEL; level++) {
++ tmp = &(per_cpu(sched_cpu_affinity_chk_masks, cpu)[level]);
++ cpumask_copy(tmp, cpu_possible_mask);
++ cpumask_clear_cpu(cpu, tmp);
++ }
++ per_cpu(sched_cpu_llc_start_mask, cpu) =
++ &(per_cpu(sched_cpu_affinity_chk_masks, cpu)[0]);
++ per_cpu(sched_cpu_affinity_chk_end_masks, cpu) =
++ &(per_cpu(sched_cpu_affinity_chk_masks, cpu)[1]);
++ }
++}
++
++static void sched_init_topology_cpumask(void)
++{
++ int cpu;
++ cpumask_t *chk;
++
++ for_each_online_cpu(cpu) {
++ chk = &(per_cpu(sched_cpu_affinity_chk_masks, cpu)[0]);
++
++#ifdef CONFIG_SCHED_SMT
++ cpumask_setall(chk);
++ cpumask_clear_cpu(cpu, chk);
++ if (cpumask_and(chk, chk, topology_sibling_cpumask(cpu))) {
++ per_cpu(sched_sibling_cpu, cpu) = cpumask_first(chk);
++ printk(KERN_INFO "pds: cpu #%d affinity check mask - smt 0x%08lx",
++ cpu, (chk++)->bits[0]);
++ }
++#endif
++#ifdef CONFIG_SCHED_MC
++ cpumask_setall(chk);
++ cpumask_clear_cpu(cpu, chk);
++ if (cpumask_and(chk, chk, cpu_coregroup_mask(cpu))) {
++ per_cpu(sched_cpu_llc_start_mask, cpu) = chk;
++ printk(KERN_INFO "pds: cpu #%d affinity check mask - coregroup 0x%08lx",
++ cpu, (chk++)->bits[0]);
++ }
++ cpumask_complement(chk, cpu_coregroup_mask(cpu));
++
++ /**
++ * Set up sd_llc_id per CPU
++ */
++ per_cpu(sd_llc_id, cpu) =
++ cpumask_first(cpu_coregroup_mask(cpu));
++#else
++ per_cpu(sd_llc_id, cpu) =
++ cpumask_first(topology_core_cpumask(cpu));
++
++ per_cpu(sched_cpu_llc_start_mask, cpu) = chk;
++
++ cpumask_setall(chk);
++ cpumask_clear_cpu(cpu, chk);
++#endif /* NOT CONFIG_SCHED_MC */
++ if (cpumask_and(chk, chk, topology_core_cpumask(cpu)))
++ printk(KERN_INFO "pds: cpu #%d affinity check mask - core 0x%08lx",
++ cpu, (chk++)->bits[0]);
++ cpumask_complement(chk, topology_core_cpumask(cpu));
++
++ if (cpumask_and(chk, chk, cpu_online_mask))
++ printk(KERN_INFO "pds: cpu #%d affinity check mask - others 0x%08lx",
++ cpu, (chk++)->bits[0]);
++
++ per_cpu(sched_cpu_affinity_chk_end_masks, cpu) = chk;
++ }
++}
++#endif
++
++void __init sched_init_smp(void)
++{
++ /* Move init over to a non-isolated CPU */
++ if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
++ BUG();
++
++ cpumask_copy(&sched_rq_queued_masks[SCHED_RQ_EMPTY], cpu_online_mask);
++
++ sched_init_topology_cpumask();
++
++ sched_smp_initialized = true;
++}
++#else
++void __init sched_init_smp(void)
++{
++}
++#endif /* CONFIG_SMP */
++
++int in_sched_functions(unsigned long addr)
++{
++ return in_lock_functions(addr) ||
++ (addr >= (unsigned long)__sched_text_start
++ && addr < (unsigned long)__sched_text_end);
++}
++
++#ifdef CONFIG_CGROUP_SCHED
++/* task group related information */
++struct task_group {
++ struct cgroup_subsys_state css;
++
++ struct rcu_head rcu;
++ struct list_head list;
++
++ struct task_group *parent;
++ struct list_head siblings;
++ struct list_head children;
++};
++
++/*
++ * Default task group.
++ * Every task in system belongs to this group at bootup.
++ */
++struct task_group root_task_group;
++LIST_HEAD(task_groups);
++
++/* Cacheline aligned slab cache for task_group */
++static struct kmem_cache *task_group_cache __read_mostly;
++#endif /* CONFIG_CGROUP_SCHED */
++
++void __init sched_init(void)
++{
++ int i;
++ struct rq *rq;
++
++ print_scheduler_version();
++
++ wait_bit_init();
++
++#ifdef CONFIG_SMP
++ for (i = 0; i < NR_SCHED_RQ_QUEUED_LEVEL; i++)
++ cpumask_clear(&sched_rq_queued_masks[i]);
++ cpumask_setall(&sched_rq_queued_masks[SCHED_RQ_EMPTY]);
++ set_bit(SCHED_RQ_EMPTY, sched_rq_queued_masks_bitmap);
++
++ cpumask_setall(&sched_rq_pending_masks[SCHED_RQ_EMPTY]);
++ set_bit(SCHED_RQ_EMPTY, sched_rq_pending_masks_bitmap);
++#else
++ uprq = &per_cpu(runqueues, 0);
++#endif
++
++#ifdef CONFIG_CGROUP_SCHED
++ task_group_cache = KMEM_CACHE(task_group, 0);
++
++ list_add(&root_task_group.list, &task_groups);
++ INIT_LIST_HEAD(&root_task_group.children);
++ INIT_LIST_HEAD(&root_task_group.siblings);
++#endif /* CONFIG_CGROUP_SCHED */
++ for_each_possible_cpu(i) {
++ rq = cpu_rq(i);
++ FULL_INIT_SKIPLIST_NODE(&rq->sl_header);
++ raw_spin_lock_init(&rq->lock);
++ rq->dither = 0;
++ rq->nr_running = rq->nr_uninterruptible = 0;
++ rq->calc_load_active = 0;
++ rq->calc_load_update = jiffies + LOAD_FREQ;
++#ifdef CONFIG_SMP
++ rq->online = false;
++ rq->cpu = i;
++
++ rq->queued_level = SCHED_RQ_EMPTY;
++ rq->pending_level = SCHED_RQ_EMPTY;
++#ifdef CONFIG_SCHED_SMT
++ per_cpu(sched_sibling_cpu, i) = i;
++ rq->active_balance = 0;
++#endif
++#endif
++ rq->nr_switches = 0;
++ atomic_set(&rq->nr_iowait, 0);
++ hrtick_rq_init(rq);
++ }
++#ifdef CONFIG_SMP
++ /* Set rq->online for cpu 0 */
++ cpu_rq(0)->online = true;
++#endif
++
++ /*
++ * The boot idle thread does lazy MMU switching as well:
++ */
++ mmgrab(&init_mm);
++ enter_lazy_tlb(&init_mm, current);
++
++ /*
++ * Make us the idle thread. Technically, schedule() should not be
++ * called from this thread, however somewhere below it might be,
++ * but because we are the idle thread, we just pick up running again
++ * when this runqueue becomes "idle".
++ */
++ init_idle(current, smp_processor_id());
++
++ calc_load_update = jiffies + LOAD_FREQ;
++
++#ifdef CONFIG_SMP
++ idle_thread_set_boot_cpu();
++
++ sched_init_topology_cpumask_early();
++#endif /* SMP */
++
++ init_schedstats();
++
++ psi_init();
++}
++
++#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
++static inline int preempt_count_equals(int preempt_offset)
++{
++ int nested = preempt_count() + rcu_preempt_depth();
++
++ return (nested == preempt_offset);
++}
++
++void __might_sleep(const char *file, int line, int preempt_offset)
++{
++ /*
++ * Blocking primitives will set (and therefore destroy) current->state,
++ * since we will exit with TASK_RUNNING make sure we enter with it,
++ * otherwise we will destroy state.
++ */
++ WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
++ "do not call blocking ops when !TASK_RUNNING; "
++ "state=%lx set at [<%p>] %pS\n",
++ current->state,
++ (void *)current->task_state_change,
++ (void *)current->task_state_change);
++
++ ___might_sleep(file, line, preempt_offset);
++}
++EXPORT_SYMBOL(__might_sleep);
++
++void ___might_sleep(const char *file, int line, int preempt_offset)
++{
++ /* Ratelimiting timestamp: */
++ static unsigned long prev_jiffy;
++
++ unsigned long preempt_disable_ip;
++
++ /* WARN_ON_ONCE() by default, no rate limit required: */
++ rcu_sleep_check();
++
++ if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
++ !is_idle_task(current)) ||
++ system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
++ oops_in_progress)
++ return;
++ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
++ return;
++ prev_jiffy = jiffies;
++
++ /* Save this before calling printk(), since that will clobber it: */
++ preempt_disable_ip = get_preempt_disable_ip(current);
++
++ printk(KERN_ERR
++ "BUG: sleeping function called from invalid context at %s:%d\n",
++ file, line);
++ printk(KERN_ERR
++ "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
++ in_atomic(), irqs_disabled(),
++ current->pid, current->comm);
++
++ if (task_stack_end_corrupted(current))
++ printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
++
++ debug_show_held_locks(current);
++ if (irqs_disabled())
++ print_irqtrace_events(current);
++#ifdef CONFIG_DEBUG_PREEMPT
++ if (!preempt_count_equals(preempt_offset)) {
++ pr_err("Preemption disabled at:");
++ print_ip_sym(preempt_disable_ip);
++ pr_cont("\n");
++ }
++#endif
++ dump_stack();
++ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++EXPORT_SYMBOL(___might_sleep);
++
++void __cant_sleep(const char *file, int line, int preempt_offset)
++{
++ static unsigned long prev_jiffy;
++
++ if (irqs_disabled())
++ return;
++
++ if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
++ return;
++
++ if (preempt_count() > preempt_offset)
++ return;
++
++ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
++ return;
++ prev_jiffy = jiffies;
++
++ printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
++ printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
++ in_atomic(), irqs_disabled(),
++ current->pid, current->comm);
++
++ debug_show_held_locks(current);
++ dump_stack();
++ add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
++}
++EXPORT_SYMBOL_GPL(__cant_sleep);
++#endif
++
++#ifdef CONFIG_MAGIC_SYSRQ
++void normalize_rt_tasks(void)
++{
++ struct task_struct *g, *p;
++ struct sched_attr attr = {
++ .sched_policy = SCHED_NORMAL,
++ };
++
++ read_lock(&tasklist_lock);
++ for_each_process_thread(g, p) {
++ /*
++ * Only normalize user tasks:
++ */
++ if (p->flags & PF_KTHREAD)
++ continue;
++
++ if (!rt_task(p)) {
++ /*
++ * Renice negative nice level userspace
++ * tasks back to 0:
++ */
++ if (task_nice(p) < 0)
++ set_user_nice(p, 0);
++ continue;
++ }
++
++ __sched_setscheduler(p, &attr, false, false);
++ }
++ read_unlock(&tasklist_lock);
++}
++#endif /* CONFIG_MAGIC_SYSRQ */
++
++#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
++/*
++ * These functions are only useful for the IA64 MCA handling, or kdb.
++ *
++ * They can only be called when the whole system has been
++ * stopped - every CPU needs to be quiescent, and no scheduling
++ * activity can take place. Using them for anything else would
++ * be a serious bug, and as a result, they aren't even visible
++ * under any other configuration.
++ */
++
++/**
++ * curr_task - return the current task for a given CPU.
++ * @cpu: the processor in question.
++ *
++ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
++ *
++ * Return: The current task for @cpu.
++ */
++struct task_struct *curr_task(int cpu)
++{
++ return cpu_curr(cpu);
++}
++
++#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
++
++#ifdef CONFIG_IA64
++/**
++ * set_curr_task - set the current task for a given CPU.
++ * @cpu: the processor in question.
++ * @p: the task pointer to set.
++ *
++ * Description: This function must only be used when non-maskable interrupts
++ * are serviced on a separate stack. It allows the architecture to switch the
++ * notion of the current task on a CPU in a non-blocking manner. This function
++ * must be called with all CPU's synchronised, and interrupts disabled, the
++ * and caller must save the original value of the current task (see
++ * curr_task() above) and restore that value before reenabling interrupts and
++ * re-starting the system.
++ *
++ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
++ */
++void ia64_set_curr_task(int cpu, struct task_struct *p)
++{
++ cpu_curr(cpu) = p;
++}
++
++#endif
++
++#ifdef CONFIG_SCHED_DEBUG
++void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
++ struct seq_file *m)
++{}
++
++void proc_sched_set_task(struct task_struct *p)
++{}
++#endif
++
++#ifdef CONFIG_CGROUP_SCHED
++static void sched_free_group(struct task_group *tg)
++{
++ kmem_cache_free(task_group_cache, tg);
++}
++
++/* allocate runqueue etc for a new task group */
++struct task_group *sched_create_group(struct task_group *parent)
++{
++ struct task_group *tg;
++
++ tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
++ if (!tg)
++ return ERR_PTR(-ENOMEM);
++
++ return tg;
++}
++
++void sched_online_group(struct task_group *tg, struct task_group *parent)
++{
++}
++
++/* rcu callback to free various structures associated with a task group */
++static void sched_free_group_rcu(struct rcu_head *rhp)
++{
++ /* Now it should be safe to free those cfs_rqs */
++ sched_free_group(container_of(rhp, struct task_group, rcu));
++}
++
++void sched_destroy_group(struct task_group *tg)
++{
++ /* Wait for possible concurrent references to cfs_rqs complete */
++ call_rcu(&tg->rcu, sched_free_group_rcu);
++}
++
++void sched_offline_group(struct task_group *tg)
++{
++}
++
++static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
++{
++ return css ? container_of(css, struct task_group, css) : NULL;
++}
++
++static struct cgroup_subsys_state *
++cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
++{
++ struct task_group *parent = css_tg(parent_css);
++ struct task_group *tg;
++
++ if (!parent) {
++ /* This is early initialization for the top cgroup */
++ return &root_task_group.css;
++ }
++
++ tg = sched_create_group(parent);
++ if (IS_ERR(tg))
++ return ERR_PTR(-ENOMEM);
++ return &tg->css;
++}
++
++/* Expose task group only after completing cgroup initialization */
++static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
++{
++ struct task_group *tg = css_tg(css);
++ struct task_group *parent = css_tg(css->parent);
++
++ if (parent)
++ sched_online_group(tg, parent);
++ return 0;
++}
++
++static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
++{
++ struct task_group *tg = css_tg(css);
++
++ sched_offline_group(tg);
++}
++
++static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
++{
++ struct task_group *tg = css_tg(css);
++
++ /*
++ * Relies on the RCU grace period between css_released() and this.
++ */
++ sched_free_group(tg);
++}
++
++static void cpu_cgroup_fork(struct task_struct *task)
++{
++}
++
++static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
++{
++ return 0;
++}
++
++static void cpu_cgroup_attach(struct cgroup_taskset *tset)
++{
++}
++
++static struct cftype cpu_legacy_files[] = {
++ { } /* Terminate */
++};
++
++static struct cftype cpu_files[] = {
++ { } /* terminate */
++};
++
++static int cpu_extra_stat_show(struct seq_file *sf,
++ struct cgroup_subsys_state *css)
++{
++ return 0;
++}
++
++struct cgroup_subsys cpu_cgrp_subsys = {
++ .css_alloc = cpu_cgroup_css_alloc,
++ .css_online = cpu_cgroup_css_online,
++ .css_released = cpu_cgroup_css_released,
++ .css_free = cpu_cgroup_css_free,
++ .css_extra_stat_show = cpu_extra_stat_show,
++ .fork = cpu_cgroup_fork,
++ .can_attach = cpu_cgroup_can_attach,
++ .attach = cpu_cgroup_attach,
++ .legacy_cftypes = cpu_files,
++ .legacy_cftypes = cpu_legacy_files,
++ .dfl_cftypes = cpu_files,
++ .early_init = true,
++ .threaded = true,
++};
++#endif /* CONFIG_CGROUP_SCHED */
++
++#undef CREATE_TRACE_POINTS
+diff --git a/kernel/sched/pds_sched.h b/kernel/sched/pds_sched.h
+new file mode 100644
+index 000000000000..87cebcba69f9
+--- /dev/null
++++ b/kernel/sched/pds_sched.h
+@@ -0,0 +1,431 @@
++#ifndef PDS_SCHED_H
++#define PDS_SCHED_H
++
++#include <linux/sched.h>
++
++#include <linux/sched/clock.h>
++#include <linux/sched/cpufreq.h>
++#include <linux/sched/cputime.h>
++#include <linux/sched/debug.h>
++#include <linux/sched/init.h>
++#include <linux/sched/isolation.h>
++#include <linux/sched/loadavg.h>
++#include <linux/sched/mm.h>
++#include <linux/sched/nohz.h>
++#include <linux/sched/signal.h>
++#include <linux/sched/stat.h>
++#include <linux/sched/sysctl.h>
++#include <linux/sched/task.h>
++#include <linux/sched/topology.h>
++#include <linux/sched/wake_q.h>
++
++#include <uapi/linux/sched/types.h>
++
++#include <linux/cpufreq.h>
++#include <linux/cpuidle.h>
++#include <linux/cpuset.h>
++#include <linux/ctype.h>
++#include <linux/kthread.h>
++#include <linux/livepatch.h>
++#include <linux/membarrier.h>
++#include <linux/proc_fs.h>
++#include <linux/psi.h>
++#include <linux/slab.h>
++#include <linux/stop_machine.h>
++#include <linux/suspend.h>
++#include <linux/swait.h>
++#include <linux/syscalls.h>
++#include <linux/tsacct_kern.h>
++
++#include <asm/tlb.h>
++
++#ifdef CONFIG_PARAVIRT
++# include <asm/paravirt.h>
++#endif
++
++#include "cpupri.h"
++
++/* task_struct::on_rq states: */
++#define TASK_ON_RQ_QUEUED 1
++#define TASK_ON_RQ_MIGRATING 2
++
++static inline int task_on_rq_queued(struct task_struct *p)
++{
++ return p->on_rq == TASK_ON_RQ_QUEUED;
++}
++
++static inline int task_on_rq_migrating(struct task_struct *p)
++{
++ return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
++}
++
++/*
++ * This is the main, per-CPU runqueue data structure.
++ * This data should only be modified by the local cpu.
++ */
++struct rq {
++ /* runqueue lock: */
++ raw_spinlock_t lock;
++
++ struct task_struct *curr, *idle, *stop;
++ struct mm_struct *prev_mm;
++
++ struct skiplist_node sl_header;
++
++ /* switch count */
++ u64 nr_switches;
++
++ atomic_t nr_iowait;
++
++#ifdef CONFIG_SMP
++ int cpu; /* cpu of this runqueue */
++ bool online;
++
++#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
++ struct sched_avg avg_irq;
++#endif
++
++ unsigned long queued_level;
++ unsigned long pending_level;
++
++#ifdef CONFIG_SCHED_SMT
++ int active_balance;
++ struct cpu_stop_work active_balance_work;
++#endif
++#endif /* CONFIG_SMP */
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++ u64 prev_irq_time;
++#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
++#ifdef CONFIG_PARAVIRT
++ u64 prev_steal_time;
++#endif /* CONFIG_PARAVIRT */
++#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
++ u64 prev_steal_time_rq;
++#endif /* CONFIG_PARAVIRT_TIME_ACCOUNTING */
++
++ /* calc_load related fields */
++ unsigned long calc_load_update;
++ long calc_load_active;
++
++ u64 clock, last_tick;
++ u64 clock_task;
++ int dither;
++
++ unsigned long nr_running;
++ unsigned long nr_uninterruptible;
++
++#ifdef CONFIG_SCHED_HRTICK
++#ifdef CONFIG_SMP
++ int hrtick_csd_pending;
++ call_single_data_t hrtick_csd;
++#endif
++ struct hrtimer hrtick_timer;
++#endif
++
++#ifdef CONFIG_SCHEDSTATS
++
++ /* latency stats */
++ struct sched_info rq_sched_info;
++ unsigned long long rq_cpu_time;
++ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
++
++ /* sys_sched_yield() stats */
++ unsigned int yld_count;
++
++ /* schedule() stats */
++ unsigned int sched_switch;
++ unsigned int sched_count;
++ unsigned int sched_goidle;
++
++ /* try_to_wake_up() stats */
++ unsigned int ttwu_count;
++ unsigned int ttwu_local;
++#endif /* CONFIG_SCHEDSTATS */
++#ifdef CONFIG_CPU_IDLE
++ /* Must be inspected within a rcu lock section */
++ struct cpuidle_state *idle_state;
++#endif
++};
++
++extern unsigned long calc_load_update;
++extern atomic_long_t calc_load_tasks;
++
++extern void calc_global_load_tick(struct rq *this_rq);
++extern long calc_load_fold_active(struct rq *this_rq, long adjust);
++
++#ifndef CONFIG_SMP
++extern struct rq *uprq;
++#define cpu_rq(cpu) (uprq)
++#define this_rq() (uprq)
++#define raw_rq() (uprq)
++#define task_rq(p) (uprq)
++#define cpu_curr(cpu) ((uprq)->curr)
++#else /* CONFIG_SMP */
++DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
++#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
++#define this_rq() this_cpu_ptr(&runqueues)
++#define raw_rq() raw_cpu_ptr(&runqueues)
++#define task_rq(p) cpu_rq(task_cpu(p))
++#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
++
++#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
++void register_sched_domain_sysctl(void);
++void unregister_sched_domain_sysctl(void);
++#else
++static inline void register_sched_domain_sysctl(void)
++{
++}
++static inline void unregister_sched_domain_sysctl(void)
++{
++}
++#endif
++
++#endif /* CONFIG_SMP */
++
++#ifndef arch_scale_freq_capacity
++static __always_inline
++unsigned long arch_scale_freq_capacity(int cpu)
++{
++ return SCHED_CAPACITY_SCALE;
++}
++#endif
++
++static inline u64 __rq_clock_broken(struct rq *rq)
++{
++ return READ_ONCE(rq->clock);
++}
++
++static inline u64 rq_clock(struct rq *rq)
++{
++ /*
++ * Relax lockdep_assert_held() checking as in VRQ, call to
++ * sched_info_xxxx() may not held rq->lock
++ * lockdep_assert_held(&rq->lock);
++ */
++ return rq->clock;
++}
++
++static inline u64 rq_clock_task(struct rq *rq)
++{
++ /*
++ * Relax lockdep_assert_held() checking as in VRQ, call to
++ * sched_info_xxxx() may not held rq->lock
++ * lockdep_assert_held(&rq->lock);
++ */
++ return rq->clock_task;
++}
++
++/*
++ * {de,en}queue flags:
++ *
++ * DEQUEUE_SLEEP - task is no longer runnable
++ * ENQUEUE_WAKEUP - task just became runnable
++ *
++ */
++
++#define DEQUEUE_SLEEP 0x01
++
++#define ENQUEUE_WAKEUP 0x01
++
++
++/*
++ * Below are scheduler API which using in other kernel code
++ * It use the dummy rq_flags
++ * ToDo : PDS need to support these APIs for compatibility with mainline
++ * scheduler code.
++ */
++struct rq_flags {
++ unsigned long flags;
++};
++
++struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
++ __acquires(rq->lock);
++
++struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
++ __acquires(p->pi_lock)
++ __acquires(rq->lock);
++
++static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
++ __releases(rq->lock)
++{
++ raw_spin_unlock(&rq->lock);
++}
++
++static inline void
++task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
++ __releases(rq->lock)
++ __releases(p->pi_lock)
++{
++ raw_spin_unlock(&rq->lock);
++ raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
++}
++
++static inline void
++rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
++ __releases(rq->lock)
++{
++ raw_spin_unlock_irq(&rq->lock);
++}
++
++static inline struct rq *
++this_rq_lock_irq(struct rq_flags *rf)
++ __acquires(rq->lock)
++{
++ struct rq *rq;
++
++ local_irq_disable();
++ rq = this_rq();
++ raw_spin_lock(&rq->lock);
++
++ return rq;
++}
++
++static inline bool task_running(struct task_struct *p)
++{
++ return p->on_cpu;
++}
++
++extern struct static_key_false sched_schedstats;
++
++static inline void sched_ttwu_pending(void) { }
++
++#ifdef CONFIG_CPU_IDLE
++static inline void idle_set_state(struct rq *rq,
++ struct cpuidle_state *idle_state)
++{
++ rq->idle_state = idle_state;
++}
++
++static inline struct cpuidle_state *idle_get_state(struct rq *rq)
++{
++ WARN_ON(!rcu_read_lock_held());
++ return rq->idle_state;
++}
++#else
++static inline void idle_set_state(struct rq *rq,
++ struct cpuidle_state *idle_state)
++{
++}
++
++static inline struct cpuidle_state *idle_get_state(struct rq *rq)
++{
++ return NULL;
++}
++#endif
++
++static inline int cpu_of(const struct rq *rq)
++{
++#ifdef CONFIG_SMP
++ return rq->cpu;
++#else
++ return 0;
++#endif
++}
++
++#include "stats.h"
++
++#ifdef CONFIG_IRQ_TIME_ACCOUNTING
++struct irqtime {
++ u64 total;
++ u64 tick_delta;
++ u64 irq_start_time;
++ struct u64_stats_sync sync;
++};
++
++DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
++
++/*
++ * Returns the irqtime minus the softirq time computed by ksoftirqd.
++ * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
++ * and never move forward.
++ */
++static inline u64 irq_time_read(int cpu)
++{
++ struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
++ unsigned int seq;
++ u64 total;
++
++ do {
++ seq = __u64_stats_fetch_begin(&irqtime->sync);
++ total = irqtime->total;
++ } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
++
++ return total;
++}
++#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
++
++#ifdef CONFIG_CPU_FREQ
++DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
++
++/**
++ * cpufreq_update_util - Take a note about CPU utilization changes.
++ * @rq: Runqueue to carry out the update for.
++ * @flags: Update reason flags.
++ *
++ * This function is called by the scheduler on the CPU whose utilization is
++ * being updated.
++ *
++ * It can only be called from RCU-sched read-side critical sections.
++ *
++ * The way cpufreq is currently arranged requires it to evaluate the CPU
++ * performance state (frequency/voltage) on a regular basis to prevent it from
++ * being stuck in a completely inadequate performance level for too long.
++ * That is not guaranteed to happen if the updates are only triggered from CFS
++ * and DL, though, because they may not be coming in if only RT tasks are
++ * active all the time (or there are RT tasks only).
++ *
++ * As a workaround for that issue, this function is called periodically by the
++ * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
++ * but that really is a band-aid. Going forward it should be replaced with
++ * solutions targeted more specifically at RT tasks.
++ */
++static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
++{
++ struct update_util_data *data;
++
++ data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
++ if (data)
++ data->func(data, rq_clock(rq), flags);
++}
++
++static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
++{
++ if (cpu_of(rq) == smp_processor_id())
++ cpufreq_update_util(rq, flags);
++}
++#else
++static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
++static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
++#endif /* CONFIG_CPU_FREQ */
++
++#ifdef CONFIG_NO_HZ_FULL
++extern int __init sched_tick_offload_init(void);
++#else
++static inline int sched_tick_offload_init(void) { return 0; }
++#endif
++
++#ifdef arch_scale_freq_capacity
++#ifndef arch_scale_freq_invariant
++#define arch_scale_freq_invariant() (true)
++#endif
++#else /* arch_scale_freq_capacity */
++#define arch_scale_freq_invariant() (false)
++#endif
++
++extern void schedule_idle(void);
++
++/*
++ * !! For sched_setattr_nocheck() (kernel) only !!
++ *
++ * This is actually gross. :(
++ *
++ * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
++ * tasks, but still be able to sleep. We need this on platforms that cannot
++ * atomically change clock frequency. Remove once fast switching will be
++ * available on such platforms.
++ *
++ * SUGOV stands for SchedUtil GOVernor.
++ */
++#define SCHED_FLAG_SUGOV 0x10000000
++
++#endif /* PDS_SCHED_H */
+diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c
+index befce29bd882..48ef3e62e7d4 100644
+--- a/kernel/sched/pelt.c
++++ b/kernel/sched/pelt.c
+@@ -234,6 +234,7 @@ ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runna
+ WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
+ }
+
++#ifndef CONFIG_SCHED_PDS
+ /*
+ * sched_entity:
+ *
+@@ -345,6 +346,7 @@ int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
+
+ return 0;
+ }
++#endif
+
+ #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+ /*
+diff --git a/kernel/sched/pelt.h b/kernel/sched/pelt.h
+index 7489d5f56960..6dc3c79da1ec 100644
+--- a/kernel/sched/pelt.h
++++ b/kernel/sched/pelt.h
+@@ -1,11 +1,13 @@
+ #ifdef CONFIG_SMP
+ #include "sched-pelt.h"
+
++#ifndef CONFIG_SCHED_PDS
+ int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
+ int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
+ int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
+ int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
+ int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
++#endif
+
+ #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
+ int update_irq_load_avg(struct rq *rq, u64 running);
+@@ -17,6 +19,7 @@ update_irq_load_avg(struct rq *rq, u64 running)
+ }
+ #endif
+
++#ifndef CONFIG_SCHED_PDS
+ /*
+ * When a task is dequeued, its estimated utilization should not be update if
+ * its util_avg has not been updated at least once.
+@@ -137,9 +140,11 @@ static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
+ return rq_clock_pelt(rq_of(cfs_rq));
+ }
+ #endif
++#endif /* CONFIG_SCHED_PDS */
+
+ #else
+
++#ifndef CONFIG_SCHED_PDS
+ static inline int
+ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
+ {
+@@ -157,6 +162,7 @@ update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
+ {
+ return 0;
+ }
++#endif
+
+ static inline int
+ update_irq_load_avg(struct rq *rq, u64 running)
+diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
+index efa686eeff26..758881a25f15 100644
+--- a/kernel/sched/sched.h
++++ b/kernel/sched/sched.h
+@@ -2,6 +2,10 @@
+ /*
+ * Scheduler internal types and methods:
+ */
++#ifdef CONFIG_SCHED_PDS
++#include "pds_sched.h"
++#else
++
+ #include <linux/sched.h>
+
+ #include <linux/sched/autogroup.h>
+@@ -2341,3 +2345,4 @@ static inline bool sched_energy_enabled(void)
+ static inline bool sched_energy_enabled(void) { return false; }
+
+ #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
++#endif /* !CONFIG_SCHED_PDS */
+diff --git a/kernel/sched/stats.c b/kernel/sched/stats.c
+index 750fb3c67eed..45bd43942575 100644
+--- a/kernel/sched/stats.c
++++ b/kernel/sched/stats.c
+@@ -22,8 +22,10 @@ static int show_schedstat(struct seq_file *seq, void *v)
+ } else {
+ struct rq *rq;
+ #ifdef CONFIG_SMP
++#ifndef CONFIG_SCHED_PDS
+ struct sched_domain *sd;
+ int dcount = 0;
++#endif
+ #endif
+ cpu = (unsigned long)(v - 2);
+ rq = cpu_rq(cpu);
+@@ -40,6 +42,7 @@ static int show_schedstat(struct seq_file *seq, void *v)
+ seq_printf(seq, "\n");
+
+ #ifdef CONFIG_SMP
++#ifndef CONFIG_SCHED_PDS
+ /* domain-specific stats */
+ rcu_read_lock();
+ for_each_domain(cpu, sd) {
+@@ -68,6 +71,7 @@ static int show_schedstat(struct seq_file *seq, void *v)
+ sd->ttwu_move_balance);
+ }
+ rcu_read_unlock();
++#endif
+ #endif
+ }
+ return 0;
+diff --git a/kernel/sysctl.c b/kernel/sysctl.c
+index c9ec050bcf46..9e642c1d75e6 100644
+--- a/kernel/sysctl.c
++++ b/kernel/sysctl.c
+@@ -131,8 +131,12 @@ static int __maybe_unused four = 4;
+ static unsigned long zero_ul;
+ static unsigned long one_ul = 1;
+ static unsigned long long_max = LONG_MAX;
+-static int one_hundred = 100;
+-static int one_thousand = 1000;
++static int __read_mostly one_hundred = 100;
++static int __read_mostly one_thousand = 1000;
++#ifdef CONFIG_SCHED_PDS
++extern int rr_interval;
++extern int sched_yield_type;
++#endif
+ #ifdef CONFIG_PRINTK
+ static int ten_thousand = 10000;
+ #endif
+@@ -305,7 +309,7 @@ static struct ctl_table sysctl_base_table[] = {
+ { }
+ };
+
+-#ifdef CONFIG_SCHED_DEBUG
++#if defined(CONFIG_SCHED_DEBUG) && !defined(CONFIG_SCHED_PDS)
+ static int min_sched_granularity_ns = 100000; /* 100 usecs */
+ static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */
+ static int min_wakeup_granularity_ns; /* 0 usecs */
+@@ -322,6 +326,7 @@ static int max_extfrag_threshold = 1000;
+ #endif
+
+ static struct ctl_table kern_table[] = {
++#ifndef CONFIG_SCHED_PDS
+ {
+ .procname = "sched_child_runs_first",
+ .data = &sysctl_sched_child_runs_first,
+@@ -487,6 +492,7 @@ static struct ctl_table kern_table[] = {
+ .extra2 = &one,
+ },
+ #endif
++#endif /* !CONFIG_SCHED_PDS */
+ #ifdef CONFIG_PROVE_LOCKING
+ {
+ .procname = "prove_locking",
+@@ -1059,6 +1065,26 @@ static struct ctl_table kern_table[] = {
+ .proc_handler = proc_dointvec,
+ },
+ #endif
++#ifdef CONFIG_SCHED_PDS
++ {
++ .procname = "rr_interval",
++ .data = &rr_interval,
++ .maxlen = sizeof (int),
++ .mode = 0644,
++ .proc_handler = &proc_dointvec_minmax,
++ .extra1 = &one,
++ .extra2 = &one_thousand,
++ },
++ {
++ .procname = "yield_type",
++ .data = &sched_yield_type,
++ .maxlen = sizeof (int),
++ .mode = 0644,
++ .proc_handler = &proc_dointvec_minmax,
++ .extra1 = &zero,
++ .extra2 = &two,
++ },
++#endif
+ #if defined(CONFIG_S390) && defined(CONFIG_SMP)
+ {
+ .procname = "spin_retry",
+diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
+index 0a426f4e3125..2692b89a70d5 100644
+--- a/kernel/time/posix-cpu-timers.c
++++ b/kernel/time/posix-cpu-timers.c
+@@ -791,6 +791,7 @@ check_timers_list(struct list_head *timers,
+ return 0;
+ }
+
++#ifndef CONFIG_SCHED_PDS
+ static inline void check_dl_overrun(struct task_struct *tsk)
+ {
+ if (tsk->dl.dl_overrun) {
+@@ -798,6 +799,7 @@ static inline void check_dl_overrun(struct task_struct *tsk)
+ __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
+ }
+ }
++#endif
+
+ /*
+ * Check for any per-thread CPU timers that have fired and move them off
+@@ -812,8 +814,10 @@ static void check_thread_timers(struct task_struct *tsk,
+ u64 expires;
+ unsigned long soft;
+
++#ifndef CONFIG_SCHED_PDS
+ if (dl_task(tsk))
+ check_dl_overrun(tsk);
++#endif
+
+ /*
+ * If cputime_expires is zero, then there are no active
+@@ -829,7 +833,7 @@ static void check_thread_timers(struct task_struct *tsk,
+ tsk_expires->virt_exp = expires;
+
+ tsk_expires->sched_exp = check_timers_list(++timers, firing,
+- tsk->se.sum_exec_runtime);
++ tsk_seruntime(tsk));
+
+ /*
+ * Check for the special case thread timers.
+@@ -839,7 +843,7 @@ static void check_thread_timers(struct task_struct *tsk,
+ unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
+
+ if (hard != RLIM_INFINITY &&
+- tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
++ tsk_rttimeout(tsk) > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
+ /*
+ * At the hard limit, we just die.
+ * No need to calculate anything else now.
+@@ -851,7 +855,7 @@ static void check_thread_timers(struct task_struct *tsk,
+ __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
+ return;
+ }
+- if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
++ if (tsk_rttimeout(tsk) > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
+ /*
+ * At the soft limit, send a SIGXCPU every second.
+ */
+@@ -1091,7 +1095,7 @@ static inline int fastpath_timer_check(struct task_struct *tsk)
+ struct task_cputime task_sample;
+
+ task_cputime(tsk, &task_sample.utime, &task_sample.stime);
+- task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
++ task_sample.sum_exec_runtime = tsk_seruntime(tsk);
+ if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
+ return 1;
+ }
+@@ -1121,8 +1125,10 @@ static inline int fastpath_timer_check(struct task_struct *tsk)
+ return 1;
+ }
+
++#ifndef CONFIG_SCHED_PDS
+ if (dl_task(tsk) && tsk->dl.dl_overrun)
+ return 1;
++#endif
+
+ return 0;
+ }
+diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c
+index 9d402e7fc949..89e56560cba2 100644
+--- a/kernel/trace/trace_selftest.c
++++ b/kernel/trace/trace_selftest.c
+@@ -1045,10 +1045,15 @@ static int trace_wakeup_test_thread(void *data)
+ {
+ /* Make this a -deadline thread */
+ static const struct sched_attr attr = {
++#ifdef CONFIG_SCHED_PDS
++ /* No deadline on BFS, use RR */
++ .sched_policy = SCHED_RR,
++#else
+ .sched_policy = SCHED_DEADLINE,
+ .sched_runtime = 100000ULL,
+ .sched_deadline = 10000000ULL,
+ .sched_period = 10000000ULL
++#endif
+ };
+ struct wakeup_test_data *x = data;
+
diff --git a/02-Glitched-PDS-by-TkG.patch b/02-Glitched-PDS-by-TkG.patch
new file mode 100644
index 000000000000..bb479cdcd6fb
--- /dev/null
+++ b/02-Glitched-PDS-by-TkG.patch
@@ -0,0 +1,164 @@
+From f7f49141a5dbe9c99d78196b58c44307fb2e6be3 Mon Sep 17 00:00:00 2001
+From: Tk-Glitch <ti3nou@gmail.com>
+Date: Wed, 4 Jul 2018 04:30:08 +0200
+Subject: glitched - PDS
+
+diff --git a/drivers/cpufreq/cpufreq_ondemand.c b/drivers/cpufreq/cpufreq_ondemand.c
+index 6b423eebfd5d..61e3271675d6 100644
+--- a/drivers/cpufreq/cpufreq_ondemand.c
++++ b/drivers/cpufreq/cpufreq_ondemand.c
+@@ -21,10 +21,10 @@
+ #include "cpufreq_ondemand.h"
+
+ /* On-demand governor macros */
+-#define DEF_FREQUENCY_UP_THRESHOLD (63)
+-#define DEF_SAMPLING_DOWN_FACTOR (1)
++#define DEF_FREQUENCY_UP_THRESHOLD (55)
++#define DEF_SAMPLING_DOWN_FACTOR (5)
+ #define MAX_SAMPLING_DOWN_FACTOR (100000)
+-#define MICRO_FREQUENCY_UP_THRESHOLD (95)
++#define MICRO_FREQUENCY_UP_THRESHOLD (63)
+ #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
+ #define MIN_FREQUENCY_UP_THRESHOLD (1)
+ #define MAX_FREQUENCY_UP_THRESHOLD (100)
+diff --git a/kernel/Kconfig.hz b/kernel/Kconfig.hz
+index 2a202a846757..1d9c7ed79b11 100644
+--- a/kernel/Kconfig.hz
++++ b/kernel/Kconfig.hz
+@@ -4,7 +4,7 @@
+
+ choice
+ prompt "Timer frequency"
+- default HZ_250
++ default HZ_500
+ help
+ Allows the configuration of the timer frequency. It is customary
+ to have the timer interrupt run at 1000 Hz but 100 Hz may be more
+@@ -39,6 +39,13 @@ choice
+ on SMP and NUMA systems and exactly dividing by both PAL and
+ NTSC frame rates for video and multimedia work.
+
++ config HZ_500
++ bool "500 HZ"
++ help
++ 500 Hz is a balanced timer frequency. Provides fast interactivity
++ on desktops with great smoothness without increasing CPU power
++ consumption and sacrificing the battery life on laptops.
++
+ config HZ_1000
+ bool "1000 HZ"
+ help
+@@ -52,6 +59,7 @@ config HZ
+ default 100 if HZ_100
+ default 250 if HZ_250
+ default 300 if HZ_300
++ default 500 if HZ_500
+ default 1000 if HZ_1000
+
+ config SCHED_HRTICK
+
+diff --git a/kernel/Kconfig.hz b/kernel/Kconfig.hz
+index 2a202a846757..1d9c7ed79b11 100644
+--- a/kernel/Kconfig.hz
++++ b/kernel/Kconfig.hz
+@@ -4,7 +4,7 @@
+
+ choice
+ prompt "Timer frequency"
+- default HZ_500
++ default HZ_750
+ help
+ Allows the configuration of the timer frequency. It is customary
+ to have the timer interrupt run at 1000 Hz but 100 Hz may be more
+@@ -46,6 +46,13 @@ choice
+ on desktops with great smoothness without increasing CPU power
+ consumption and sacrificing the battery life on laptops.
+
++ config HZ_750
++ bool "750 HZ"
++ help
++ 750 Hz is a good timer frequency for desktops. Provides fast
++ interactivity with great smoothness without sacrificing too
++ much throughput.
++
+ config HZ_1000
+ bool "1000 HZ"
+ help
+@@ -60,6 +67,7 @@ config HZ
+ default 250 if HZ_250
+ default 300 if HZ_300
+ default 500 if HZ_500
++ default 750 if HZ_750
+ default 1000 if HZ_1000
+
+ config SCHED_HRTICK
+
+diff --git a/mm/vmscan.c b/mm/vmscan.c
+index 9270a4370d54..30d01e647417 100644
+--- a/mm/vmscan.c
++++ b/mm/vmscan.c
+@@ -159,7 +159,7 @@ struct scan_control {
+ /*
+ * From 0 .. 100. Higher means more swappy.
+ */
+-int vm_swappiness = 60;
++int vm_swappiness = 20;
+ /*
+ * The total number of pages which are beyond the high watermark within all
+ * zones.
+
+diff --git a/kernel/sched/pds.c b/kernel/sched/pds.c
+index c2d831b242b6d18a47e0d87a9f5433a7748b52ff..5bc8d7a8f920c21feab69b2706a3328dc8d39f9a 100644
+--- a/kernel/sched/pds.c
++++ b/kernel/sched/pds.c
+@@ -409,12 +409,11 @@ struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
+ * [L] ->on_rq
+ * RELEASE (rq->lock)
+ *
+- * If we observe the old CPU in task_rq_lock(), the acquire of
++ * If we observe the old CPU in task_rq_lock, the acquire of
+ * the old rq->lock will fully serialize against the stores.
+ *
+- * If we observe the new CPU in task_rq_lock(), the address
+- * dependency headed by '[L] rq = task_rq()' and the acquire
+- * will pair with the WMB to ensure we then also see migrating.
++ * If we observe the new CPU in task_rq_lock, the acquire will
++ * pair with the WMB to ensure we must then also see migrating.
+ */
+ if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
+ return rq;
+@@ -952,9 +953,9 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
+ smp_wmb();
+
+ #ifdef CONFIG_THREAD_INFO_IN_TASK
+- WRITE_ONCE(p->cpu, cpu);
++ p->cpu = cpu;
+ #else
+- WRITE_ONCE(task_thread_info(p)->cpu, cpu);
++ task_thread_info(p)->cpu = cpu;
+ #endif
+ #endif
+ }
+@@ -1035,7 +1036,7 @@ static void detach_task(struct rq *rq, struct task_struct *p, int target_cpu)
+ {
+ lockdep_assert_held(&rq->lock);
+
+- WRITE_ONCE(p->on_rq ,TASK_ON_RQ_MIGRATING);
++ p->on_rq = TASK_ON_RQ_MIGRATING;
+ if (task_contributes_to_load(p))
+ rq->nr_uninterruptible++;
+ dequeue_task(p, rq, 0);
+diff --git a/kernel/sched/pds_sched.h b/kernel/sched/pds_sched.h
+index 20dcf19ea057627d91be07b4ec20f0827c30084c..24fa90ca63d144cc4f45d82d88407ea70d2d2edf 100644
+--- a/kernel/sched/pds_sched.h
++++ b/kernel/sched/pds_sched.h
+@@ -56,7 +56,7 @@ static inline int task_on_rq_queued(struct task_struct *p)
+
+ static inline int task_on_rq_migrating(struct task_struct *p)
+ {
+- return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
++ return p->on_rq == TASK_ON_RQ_MIGRATING;
+ }
+
+ enum {
+
diff --git a/PKGBUILD b/PKGBUILD
index e26af387f68c..6d1b187a6758 100644
--- a/PKGBUILD
+++ b/PKGBUILD
@@ -94,6 +94,8 @@ source=("git+${_repo_url}?signed#tag=v${_srcver}"
60-linux.hook # pacman hook for depmod
90-linux.hook # pacman hook for initramfs regeneration
linux.preset # standard config files for mkinitcpio ramdisk
+ 01-Undead-PDS-0.99o-rebase-by-TkG.patch
+ 02-Glitched-PDS-by-TkG.patch
01-Glitched-PDS-by-TkG.patch
02-Undead-PDS-0.99o-rebase-by-TkG.patch
)
@@ -108,6 +110,8 @@ sha512sums=('SKIP'
'7ad5be75ee422dda3b80edd2eb614d8a9181e2c8228cd68b3881e2fb95953bf2dea6cbe7900ce1013c9de89b2802574b7b24869fc5d7a95d3cc3112c4d27063a'
'2718b58dbbb15063bacb2bde6489e5b3c59afac4c0e0435b97fe720d42c711b6bcba926f67a8687878bd51373c9cf3adb1915a11666d79ccb220bf36e0788ab7'
'2dc6b0ba8f7dbf19d2446c5c5f1823587de89f4e28e9595937dd51a87755099656f2acec50e3e2546ea633ad1bfd1c722e0c2b91eef1d609103d8abdc0a7cbaf'
+ 'cdfa59b9f369a5795c93ced526e7f480851ef439f3379e6c1a32b9cf29232cd4671fe4b0ddb50c5d996e23db71582844e233fee96bb551827eaf70b0be1d18dc'
+ '3ff796cbc213ae5f43a55f1ba92406bba04703db3459040beacacd9baceb3138021e908f440bd101cc76cb725e418ebdc8ab776327801690da30a1477bc84753'
'3ff796cbc213ae5f43a55f1ba92406bba04703db3459040beacacd9baceb3138021e908f440bd101cc76cb725e418ebdc8ab776327801690da30a1477bc84753'
'cdfa59b9f369a5795c93ced526e7f480851ef439f3379e6c1a32b9cf29232cd4671fe4b0ddb50c5d996e23db71582844e233fee96bb551827eaf70b0be1d18dc')
@@ -119,8 +123,8 @@ prepare() {
# https://github.com/graysky2/kernel_gcc_patch
msg2 "Patching Undead PDS 0.99o 5.1 rebase by TkG"
- patch -Np1 -i "$srcdir/01-Glitched-PDS-by-TkG.patch"
- patch -Np1 -i "$srcdir/02-Undead-PDS-0.99o-rebase-by-TkG.patch"
+ patch -Np1 -i "$srcdir/01-Undead-PDS-0.99o-rebase-by-TkG.patch"
+ patch -Np1 -i "$srcdir/02-Glitched-PDS-by-TkG.patch"
# https://github.com/graysky2/kernel_gcc_patch
msg2 "Patching to enabled additional gcc CPU optimizatons..."