1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
|
diff --git a/src/sage/arith/misc.py b/src/sage/arith/misc.py
index 53d9683279..564b99044f 100644
--- a/src/sage/arith/misc.py
+++ b/src/sage/arith/misc.py
@@ -1458,13 +1458,13 @@ def divisors(n):
sage: K.<a> = QuadraticField(7)
sage: divisors(K.ideal(7))
- [Fractional ideal (1), Fractional ideal (a), Fractional ideal (7)]
+ [Fractional ideal (1), Fractional ideal (-a), Fractional ideal (7)]
sage: divisors(K.ideal(3))
[Fractional ideal (1), Fractional ideal (3),
Fractional ideal (-a + 2), Fractional ideal (-a - 2)]
sage: divisors(K.ideal(35))
- [Fractional ideal (1), Fractional ideal (5), Fractional ideal (a),
- Fractional ideal (7), Fractional ideal (5*a), Fractional ideal (35)]
+ [Fractional ideal (1), Fractional ideal (5), Fractional ideal (-a),
+ Fractional ideal (7), Fractional ideal (-5*a), Fractional ideal (35)]
TESTS::
diff --git a/src/sage/ext_data/pari/simon/ell.gp b/src/sage/ext_data/pari/simon/ell.gp
index 74f0786646..21cff9cbb3 100644
--- a/src/sage/ext_data/pari/simon/ell.gp
+++ b/src/sage/ext_data/pari/simon/ell.gp
@@ -1038,7 +1038,7 @@ if( DEBUGLEVEL_ell >= 1, print(" trivial points on E(K) = ");
KS2gen = KS2gen[1];
for( i = 1, #KS2gen,
KS2gen[i] = nfbasistoalg(bnf, KS2gen[i]));
- KS2gen = concat(Mod(lift(bnf.tufu),bnf.pol),KS2gen);
+ KS2gen = concat(Mod(lift(concat(bnf.tu[2], bnf.fu)),bnf.pol),KS2gen);
if( DEBUGLEVEL_ell >= 2,
print(" #K(b,2)gen = ",#KS2gen);
print(" K(b,2)gen = ",KS2gen));
@@ -1072,7 +1072,7 @@ if( DEBUGLEVEL_ell >= 1,
KS2gen = KS2gen[1];
for( i = 1, #KS2gen,
KS2gen[i] = nfbasistoalg(bnf, KS2gen[i]));
- KS2gen = concat(Mod(lift(bnf.tufu),bnf.pol),KS2gen);
+ KS2gen = concat(Mod(lift(concat(bnf.tu[2], bnf.fu)),bnf.pol),KS2gen);
if( DEBUGLEVEL_ell >= 2,
print(" #K(a^2-4b,2)gen = ",#KS2gen);
print(" K(a^2-4b,2)gen = ",KS2gen));
@@ -1244,11 +1244,11 @@ if( DEBUGLEVEL_ell >= 4, print(" bbbnf.clgp = ",bbbnf.clgp));
SL1 = idealmul(bbbnf,SL0,rnfeltup(rrrnf,bleg));
SL = idealfactor(bbbnf,SL1)[,1]~;
sunL = bnfsunit(bbbnf,SL);
- fondsunL = concat(bbbnf.futu,vector(#sunL[1],i,nfbasistoalg(bbbnf,sunL[1][i])));
+ fondsunL = concat(concat(bbbnf.fu, bbbnf.tu[2]),vector(#sunL[1],i,nfbasistoalg(bbbnf,sunL[1][i])));
normfondsunL = vector(#fondsunL, i, norm(rnfeltabstorel(rrrnf,fondsunL[i])));
SK = idealfactor(bnf,idealnorm(bbbnf,SL1))[,1]~;
sunK = bnfsunit(bnf,SK);
- fondsunK = concat(bnf.futu,vector(#sunK[1],i,nfbasistoalg(bnf,sunK[1][i])));
+ fondsunK = concat(concat(bnf.fu, bnf.tu[2]),vector(#sunK[1],i,nfbasistoalg(bnf,sunK[1][i])));
vecbleg = bnfissunit(bnf,sunK,bleg);
matnorm = matrix(#fondsunK,#normfondsunL,i,j,0);
for( i = 1, #normfondsunL,
@@ -1345,7 +1345,7 @@ if( DEBUGLEVEL_ell >= 4, print("on factorise bb = ",bb));
sun = bnfsunit(bnf,idealfactor(bnf,bb)[,1]~);
fact = lift(bnfissunit(bnf,sun,bb));
if( DEBUGLEVEL_ell >= 4, print("fact = ",fact));
- suni = concat(bnf.futu,vector(#sun[1],i,nfbasistoalg(bnf,sun[1][i])));
+ suni = concat(concat(bnf.fu, bnf.tu[2]),vector(#sun[1],i,nfbasistoalg(bnf,sun[1][i])));
for( i = 1, #suni,
if( (f = fact[i]>>1),
test =0;
@@ -1554,7 +1554,7 @@ if( DEBUGLEVEL_ell >= 3, print(" KS2gen = ",KS2gen[1]));
LS2gen = LS2gen[1];
LS2 = vector(#LS2gen,i,lift(nfbasistoalg(Lrnf,LS2gen[i])));
- LS2 = concat(lift(Lrnf.futu),LS2);
+ LS2 = concat(lift(concat(Lrnf.fu, Lrnf.tu[2])),LS2);
LS2 = subst(LS2,'x,ttheta);
LS2 = LS2*Mod(1,polrel);
@@ -1992,7 +1992,7 @@ if( DEBUGLEVEL_ell >= 2, print(" Algorithm of complete 2-descent"));
KS2gen = KS2gen[1];
for( i = 1, #KS2gen,
KS2gen[i] = nfbasistoalg(bnf, KS2gen[i]));
- KS2gen = concat(Mod(lift(bnf.tufu),bnf.pol),KS2gen);
+ KS2gen = concat(Mod(lift(concat(bnf.tu[2], bnf.fu)),bnf.pol),KS2gen);
if( DEBUGLEVEL_ell >= 2,
print(" #K(S,2)gen = ",#KS2gen);
print(" K(S,2)gen = ",KS2gen)
diff --git a/src/sage/ext_data/pari/simon/ellQ.gp b/src/sage/ext_data/pari/simon/ellQ.gp
index aede9fc941..27cc124372 100644
--- a/src/sage/ext_data/pari/simon/ellQ.gp
+++ b/src/sage/ext_data/pari/simon/ellQ.gp
@@ -1162,7 +1162,7 @@ if( DEBUGLEVEL_ell >= 4, print(" kerval = ",kerval));
LS2gen[j]^kerval[j,i]));
\\ Add the units
- LS2gen = concat(Mod(bnf[8][5],bnf.pol),LS2gen); \\ LS2gen = concat(bnf.fu,LS2gen);
+ LS2gen = concat(bnf.fu,LS2gen); \\ LS2gen = concat(bnf.fu,LS2gen);
\\ Add also the torsion unit if its order is divisible by p.
if( bnf[8][4][1]%p == 0, \\ if( bnf.tu[1]%p == 0,
LS2gen = concat( [Mod(bnf[8][4][2],bnf.pol)], LS2gen)); \\ LS2gen = concat( [Mod(bnf.tu[2],bnf.pol)], LS2gen));
diff --git a/src/sage/geometry/cone.py b/src/sage/geometry/cone.py
index 33b28dbede..1c6873eadd 100644
--- a/src/sage/geometry/cone.py
+++ b/src/sage/geometry/cone.py
@@ -4268,31 +4268,31 @@ class ConvexRationalPolyhedralCone(IntegralRayCollection, Container):
M(-5, 21, 0, -3),
M( 0, -2, 0, 1),
M(15, -63, 25, 9),
- M( 2, -3, 0, 1),
- M( 1, -4, 1, 1),
- M(-1, 3, 0, 0),
M( 4, -4, 0, 1),
- M( 1, -5, 2, 1),
M( 3, -5, 1, 1),
- M( 6, -5, 0, 1),
- M( 3, -13, 5, 2),
M( 2, -6, 2, 1),
- M( 5, -6, 1, 1),
- M( 0, 1, 0, 0),
- M( 8, -6, 0, 1),
+ M(-1, 7, 0, -1),
+ M( 6, -21, 8, 3),
+ M( 5, -21, 9, 3),
+ M(-1, 3, 0, 0),
+ M( 7, -28, 11, 4),
+ M( 1, -5, 2, 1),
M(-2, 8, 0, -1),
+ M( 8, -6, 0, 1),
+ M( 7, -7, 1, 1),
+ M( 3, -13, 5, 2),
+ M( 2, -3, 0, 1),
+ M( 1, -4, 1, 1),
+ M(-3, 14, 0, -2),
M(10, -42, 17, 6),
- M( 7, -28, 11, 4),
- M( 5, -21, 9, 3),
- M( 6, -21, 8, 3),
+ M( 1, 0, 0, 0),
+ M( 0, 0, 1, 0),
+ M( 6, -5, 0, 1),
+ M( 5, -6, 1, 1),
+ M( 4, -7, 2, 1),
M( 5, -14, 5, 2),
M( 2, -7, 3, 1),
- M( 4, -7, 2, 1),
- M( 7, -7, 1, 1),
- M( 0, 0, 1, 0),
- M(-3, 14, 0, -2),
- M(-1, 7, 0, -1),
- M( 1, 0, 0, 0)
+ M( 0, 1, 0, 0)
in 4-d lattice M
Not a strictly convex cone::
diff --git a/src/sage/groups/abelian_gps/abelian_group.py b/src/sage/groups/abelian_gps/abelian_group.py
index b61b94c7e4..f7ccab44a3 100644
--- a/src/sage/groups/abelian_gps/abelian_group.py
+++ b/src/sage/groups/abelian_gps/abelian_group.py
@@ -1451,7 +1451,7 @@ class AbelianGroup_class(UniqueRepresentation, AbelianGroupBase):
EXAMPLES::
sage: AbelianGroup([2,3]).subgroups()
- [Multiplicative Abelian subgroup isomorphic to C2 x C3 generated by {f0*f1^2},
+ [Multiplicative Abelian subgroup isomorphic to C2 x C3 generated by {f0*f1},
Multiplicative Abelian subgroup isomorphic to C2 generated by {f0},
Multiplicative Abelian subgroup isomorphic to C3 generated by {f1},
Trivial Abelian subgroup]
diff --git a/src/sage/groups/additive_abelian/additive_abelian_group.py b/src/sage/groups/additive_abelian/additive_abelian_group.py
index 3dcedeb7e3..48747e4870 100644
--- a/src/sage/groups/additive_abelian/additive_abelian_group.py
+++ b/src/sage/groups/additive_abelian/additive_abelian_group.py
@@ -61,18 +61,18 @@ def AdditiveAbelianGroup(invs, remember_generators = True):
((1, 0, 0), (0, 1, 0), (0, 0, 1))
sage: [H.0, H.1, H.2]
[(1, 0, 0), (0, 1, 0), (0, 0, 1)]
- sage: p=H.0+H.1+6*H.2; p
- (1, 1, 6)
+ sage: p=2*H.0+H.1+6*H.2; p
+ (2, 1, 6)
sage: H.smith_form_gens()
- ((2, 1, 0), (0, 0, 1))
+ ((1, 1, 0), (0, 0, 1))
sage: q=H.linear_combination_of_smith_form_gens([5,6]); q
- (1, 1, 6)
+ (2, 1, 6)
sage: p==q
True
- sage: r=H(vector([1,1,6])); r
- (1, 1, 6)
+ sage: r=H(vector([2,1,6])); r
+ (2, 1, 6)
sage: p==r
True
@@ -85,21 +85,21 @@ def AdditiveAbelianGroup(invs, remember_generators = True):
sage: G=AdditiveAbelianGroup([3,2,0], remember_generators=False)
sage: G.gens()
- ((2, 1, 0), (0, 0, 1))
+ ((1, 1, 0), (0, 0, 1))
sage: [G.0, G.1]
- [(2, 1, 0), (0, 0, 1)]
+ [(1, 1, 0), (0, 0, 1)]
sage: p=5*G.0+6*G.1; p
- (1, 1, 6)
+ (2, 1, 6)
sage: H.smith_form_gens()
- ((2, 1, 0), (0, 0, 1))
+ ((1, 1, 0), (0, 0, 1))
sage: q=G.linear_combination_of_smith_form_gens([5,6]); q
- (1, 1, 6)
+ (2, 1, 6)
sage: p==q
True
- sage: r=G(vector([1,1,6])); r
- (1, 1, 6)
+ sage: r=G(vector([2,1,6])); r
+ (2, 1, 6)
sage: p==r
True
@@ -427,7 +427,7 @@ class AdditiveAbelianGroup_fixed_gens(AdditiveAbelianGroup_class):
sage: G.gens()
((1, 0), (0, 1))
sage: G.smith_form_gens()
- ((1, 2),)
+ ((1, 1),)
"""
return self._orig_gens
diff --git a/src/sage/groups/fqf_orthogonal.py b/src/sage/groups/fqf_orthogonal.py
index 3c5190589b..c536f03064 100644
--- a/src/sage/groups/fqf_orthogonal.py
+++ b/src/sage/groups/fqf_orthogonal.py
@@ -156,9 +156,9 @@ class FqfOrthogonalGroup(AbelianGroupAutomorphismGroup_subgroup):
sage: S2 = 9 * T
sage: Q = S1/S2
sage: G = T.orthogonal_group()
- sage: g = G(matrix(ZZ, 2, [8, 0, 0, 1]))
+ sage: g = G(matrix(ZZ, 2, [7, 12, 8, 19]))
sage: Q.1 * g
- (0, 2)
+ (0, 1)
"""
Element = FqfIsometry
diff --git a/src/sage/lfunctions/pari.py b/src/sage/lfunctions/pari.py
index f810157b3e..f621b57c67 100644
--- a/src/sage/lfunctions/pari.py
+++ b/src/sage/lfunctions/pari.py
@@ -421,7 +421,7 @@ class LFunction(SageObject):
sage: L.derivative(1,E.rank())
1.51863300057685
sage: L.taylor_series(1,4)
- -3...e-19 + (...e-19)*z + 0.759316500288427*z^2 - 0.430302337583362*z^3 + O(z^4)
+ ...e-19 + (...e-19)*z + 0.759316500288427*z^2 - 0.430302337583362*z^3 + O(z^4)
.. RUBRIC:: Number field
diff --git a/src/sage/libs/pari/__init__.py b/src/sage/libs/pari/__init__.py
index 77eda66097..3fa4618631 100644
--- a/src/sage/libs/pari/__init__.py
+++ b/src/sage/libs/pari/__init__.py
@@ -161,12 +161,12 @@ exact object. Therefore, you should set the precision for each method
call individually::
sage: e = pari([0,0,0,-82,0]).ellinit()
- sage: eta1 = e.elleta(precision=100)[0]
+ sage: eta1 = e.elleta(precision=50)[0]
sage: eta1.sage()
3.6054636014326520859158205642077267748
sage: eta1 = e.elleta(precision=180)[0]
sage: eta1.sage()
- 3.60546360143265208591582056420772677481026899659802474544
+ 3.605463601432652085915820564207726774810268996598024745444380641429820491740
"""
diff --git a/src/sage/libs/pari/convert_sage.pyx b/src/sage/libs/pari/convert_sage.pyx
index 33aa4d2d46..b506227cff 100644
--- a/src/sage/libs/pari/convert_sage.pyx
+++ b/src/sage/libs/pari/convert_sage.pyx
@@ -144,6 +144,20 @@ cpdef gen_to_sage(Gen z, locals=None):
sage: a.parent()
Complex Field with 64 bits of precision
+ sage: z = pari('1 + 1.0*I'); z
+ 1 + 1.00000000000000*I
+ sage: a = gen_to_sage(z); a
+ 1.00000000000000000 + 1.00000000000000000*I
+ sage: a.parent()
+ Complex Field with 64 bits of precision
+
+ sage: z = pari('1.0 + 1*I'); z
+ 1.00000000000000 + I
+ sage: a = gen_to_sage(z); a
+ 1.00000000000000000 + 1.00000000000000000*I
+ sage: a.parent()
+ Complex Field with 64 bits of precision
+
Converting polynomials::
sage: f = pari('(2/3)*x^3 + x - 5/7 + y')
@@ -241,7 +255,9 @@ cpdef gen_to_sage(Gen z, locals=None):
elif t == t_FRAC:
return Rational(z)
elif t == t_REAL:
- prec = prec_words_to_bits(z.precision())
+ prec = z.bitprecision()
+ if prec.type() == 't_INFINITY':
+ prec = 53
return RealField(prec)(z)
elif t == t_COMPLEX:
real = z.real()
@@ -251,14 +267,19 @@ cpdef gen_to_sage(Gen z, locals=None):
if tx in [t_INTMOD, t_PADIC] or ty in [t_INTMOD, t_PADIC]:
raise NotImplementedError("No conversion to python available for t_COMPLEX with t_INTMOD or t_PADIC components")
if tx == t_REAL or ty == t_REAL:
- xprec = real.precision() # will be 0 if exact
- yprec = imag.precision() # will be 0 if exact
- if xprec == 0:
- prec = prec_words_to_bits(yprec)
- elif yprec == 0:
- prec = prec_words_to_bits(xprec)
+ xprec = real.bitprecision() # will be 0 if exact
+ yprec = imag.bitprecision() # will be 0 if exact
+ if xprec == 0 or yprec == 0:
+ raise RuntimeError
+ if xprec.type() == 't_INFINITY':
+ if yprec.type() == 't_INFINITY':
+ prec = 53
+ else:
+ prec = yprec
+ elif yprec.type() == 't_INFINITY':
+ prec = xprec
else:
- prec = max(prec_words_to_bits(xprec), prec_words_to_bits(yprec))
+ prec = max(xprec, yprec)
R = RealField(prec)
C = ComplexField(prec)
diff --git a/src/sage/libs/pari/tests.py b/src/sage/libs/pari/tests.py
index eb1c04f1e6..40329aea82 100644
--- a/src/sage/libs/pari/tests.py
+++ b/src/sage/libs/pari/tests.py
@@ -135,7 +135,7 @@ Some more exotic examples::
sage: K.<a> = NumberField(polygen(QQ)^3 - 2)
sage: pari(K)
- [y^3 - 2, [1, 1], -108, 1, [[1, 1.25992104989487, 1.58740105196820; 1, -0.629960524947437 + 1.09112363597172*I, -0.793700525984100 - 1.37472963699860*I], [1, 1.25992104989487, 1.58740105196820; 1, 0.461163111024285, -2.16843016298270; 1, -1.72108416091916, 0.581029111014503], [1, 1, 2; 1, 0, -2; 1, -2, 1], [3, 0, 0; 0, 0, 6; 0, 6, 0], [6, 0, 0; 0, 6, 0; 0, 0, 3], [2, 0, 0; 0, 0, 1; 0, 1, 0], [2, [0, 0, 2; 1, 0, 0; 0, 1, 0]], []], [1.25992104989487, -0.629960524947437 + 1.09112363597172*I], [1, y, y^2], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0, 0, 0, 2, 0, 2, 0; 0, 1, 0, 1, 0, 0, 0, 0, 2; 0, 0, 1, 0, 1, 0, 1, 0, 0]]
+ [y^3 - 2, [1, 1], -108, 1, [[1, 1.25992104989487, 1.58740105196820; 1, -0.629960524947437 + 1.09112363597172*I, -0.793700525984100 - 1.37472963699860*I], [1, 1.25992104989487, 1.58740105196820; 1, 0.461163111024285, -2.16843016298270; 1, -1.72108416091916, 0.581029111014503], [16, 20, 25; 16, 7, -35; 16, -28, 9], [3, 0, 0; 0, 0, 6; 0, 6, 0], [6, 0, 0; 0, 6, 0; 0, 0, 3], [2, 0, 0; 0, 0, 1; 0, 1, 0], [2, [0, 0, 2; 1, 0, 0; 0, 1, 0]], [2, 3]], [1.25992104989487, -0.629960524947437 + 1.09112363597172*I], [1, y, y^2], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0, 0, 0, 2, 0, 2, 0; 0, 1, 0, 1, 0, 0, 0, 0, 2; 0, 0, 1, 0, 1, 0, 1, 0, 0]]
sage: E = EllipticCurve('37a1')
sage: pari(E)
@@ -375,13 +375,13 @@ Constructors::
sage: pari('["bc","ab","bc"]').Set()
["ab", "bc"]
- sage: pari([65,66,123]).Strchr()
+ sage: pari([65,66,123]).strchr()
"AB{"
sage: pari('"Sage"').Vecsmall()
Vecsmall([83, 97, 103, 101])
- sage: _.Strchr()
+ sage: _.strchr()
"Sage"
- sage: pari([83, 97, 103, 101]).Strchr()
+ sage: pari([83, 97, 103, 101]).strchr()
"Sage"
Basic functions::
@@ -448,7 +448,7 @@ Basic functions::
sage: pari('x').component(0)
Traceback (most recent call last):
...
- PariError: non-existent component: index < 1
+ PariError: nonexistent component: index < 1
sage: pari('x+1').conj()
x + 1
@@ -767,7 +767,7 @@ Transcendental functions::
sage: pari(2).besseli(3+i)
1.12539407613913 + 2.08313822670661*I
sage: C.<i> = ComplexField()
- sage: pari(2+i).besseln(3)
+ sage: pari(2+i).bessely(3)
-0.280775566958244 - 0.486708533223726*I
sage: pari(1.5).cos()
@@ -822,7 +822,7 @@ Transcendental functions::
sage: pari(-1).gamma()
Traceback (most recent call last):
...
- PariError: domain error in gamma: argument = non-positive integer
+ PariError: domain error in gamma: argument = nonpositive integer
sage: pari(2).gammah()
1.32934038817914
@@ -1633,7 +1633,7 @@ General number fields::
sage: x = QQ['x'].0; nf = pari(x^2 + 2).nfinit()
sage: nf.nfgaloisconj()
- [x, -x]~
+ [-x, x]~
sage: nf = pari(x^3 + 2).nfinit()
sage: nf.nfgaloisconj()
[x]~
@@ -1676,7 +1676,7 @@ General number fields::
[[1, [7605, 4]~, [5610, 5]~, [7913, -6]~; 0, 1, 0, -1; 0, 0, 1, 0; 0, 0, 0, 1], [[19320, 13720; 0, 56], [2, 1; 0, 1], 1, 1]]
sage: pari('x^3 - 17').nfinit()
- [x^3 - 17, [1, 1], -867, 3, [[1, 1.68006914259990, 2.57128159065824; 1, -0.340034571299952 - 2.65083754153991*I, -1.28564079532912 + 2.22679517779329*I], [1, 1.68006914259990, 2.57128159065824; 1, -2.99087211283986, 0.941154382464174; 1, 2.31080297023995, -3.51243597312241], [1, 2, 3; 1, -3, 1; 1, 2, -4], [3, 1, 0; 1, -11, 17; 0, 17, 0], [51, 0, 16; 0, 17, 3; 0, 0, 1], [17, 0, -1; 0, 0, 3; -1, 3, 2], [51, [-17, 6, -1; 0, -18, 3; 1, 0, -16]], [3, 17]], [2.57128159065824, -1.28564079532912 + 2.22679517779329*I], [3, x^2 - x + 1, 3*x], [1, 0, -1; 0, 0, 3; 0, 1, 1], [1, 0, 0, 0, -4, 6, 0, 6, -1; 0, 1, 0, 1, 1, -1, 0, -1, 3; 0, 0, 1, 0, 2, 0, 1, 0, 1]]
+ [x^3 - 17, [1, 1], -867, 3, [[1, 1.68006914259990, 2.57128159065824; 1, -0.340034571299952 - 2.65083754153991*I, -1.28564079532912 + 2.22679517779329*I], [1, 1.68006914259990, 2.57128159065824; 1, -2.99087211283986, 0.941154382464174; 1, 2.31080297023995, -3.51243597312241], [16, 27, 41; 16, -48, 15; 16, 37, -56], [3, 1, 0; 1, -11, 17; 0, 17, 0], [51, 0, 16; 0, 17, 3; 0, 0, 1], [17, 0, -1; 0, 0, 3; -1, 3, 2], [51, [-17, 6, -1; 0, -18, 3; 1, 0, -16]], [3, 17]], [2.57128159065824, -1.28564079532912 + 2.22679517779329*I], [3, x^2 - x + 1, 3*x], [1, 0, -1; 0, 0, 3; 0, 1, 1], [1, 0, 0, 0, -4, 6, 0, 6, -1; 0, 1, 0, 1, 1, -1, 0, -1, 3; 0, 0, 1, 0, 2, 0, 1, 0, 1]]
sage: pari('x^2 + 10^100 + 1').nfinit()
[...]
sage: pari('1.0').nfinit()
@@ -1737,7 +1737,7 @@ General number fields::
sage: pari(-23).quadhilbert()
x^3 - x^2 + 1
sage: pari(145).quadhilbert()
- x^4 - 6*x^2 - 5*x - 1
+ x^4 - x^3 - 5*x^2 - x + 1
sage: pari(-12).quadhilbert() # Not fundamental
Traceback (most recent call last):
...
@@ -1762,7 +1762,7 @@ library::
sage: e = pari([0,0,0,-82,0]).ellinit()
sage: eta1 = e.elleta(precision=100)[0]
sage: eta1.sage()
- 3.6054636014326520859158205642077267748
+ 3.60546360143265208591582056420772677481026899659802474544
sage: eta1 = e.elleta(precision=180)[0]
sage: eta1.sage()
3.60546360143265208591582056420772677481026899659802474544
diff --git a/src/sage/matrix/matrix1.pyx b/src/sage/matrix/matrix1.pyx
index 0455c169fe..4fa3cb9b2d 100644
--- a/src/sage/matrix/matrix1.pyx
+++ b/src/sage/matrix/matrix1.pyx
@@ -87,7 +87,7 @@ cdef class Matrix(Matrix0):
[1.000000000, 2.000000000; 3.000000000, 1.000000000] # 32-bit
[1.00000000000000, 2.00000000000000; 3.00000000000000, 1.00000000000000] # 64-bit
sage: b[0][0].precision() # in words
- 3
+ 19
"""
from sage.libs.pari.all import pari
return pari.matrix(self._nrows, self._ncols, self._list())
diff --git a/src/sage/modular/local_comp/liftings.py b/src/sage/modular/local_comp/liftings.py
index 91bfd2448d..f9bf800b22 100644
--- a/src/sage/modular/local_comp/liftings.py
+++ b/src/sage/modular/local_comp/liftings.py
@@ -222,9 +222,9 @@ def lift_for_SL(A, N=None):
TESTS::
sage: lift_for_SL(matrix(3,3,[1,2,0,3,4,0,0,0,1]),3)
- [10 14 3]
- [ 9 10 3]
- [ 3 3 1]
+ [ -2 -4 3]
+ [ -9 -14 3]
+ [ -6 -9 1]
sage: A = matrix(Zmod(7), 2, [1,0,0,1])
sage: L = lift_for_SL(A)
diff --git a/src/sage/modular/local_comp/smoothchar.py b/src/sage/modular/local_comp/smoothchar.py
index 6dedb26e7e..3b1ac90460 100644
--- a/src/sage/modular/local_comp/smoothchar.py
+++ b/src/sage/modular/local_comp/smoothchar.py
@@ -1617,8 +1617,8 @@ class SmoothCharacterGroupRamifiedQuadratic(SmoothCharacterGroupGeneric):
sage: G = SmoothCharacterGroupRamifiedQuadratic(3, 1, QQ)
sage: s = G.number_field().gen()
sage: G.discrete_log(4, 3 + 2*s)
- [5, 1, 1, 1]
- sage: gs = G.unit_gens(4); gs[0]^5 * gs[1] * gs[2] * gs[3] - (3 + 2*s) in G.ideal(4)
+ [1, 2, 2, 1]
+ sage: gs = G.unit_gens(4); gs[0] * gs[1]^2 * gs[2]^2 * gs[3] - (3 + 2*s) in G.ideal(4)
True
"""
x = self.number_field().coerce(x)
diff --git a/src/sage/modular/modsym/p1list_nf.py b/src/sage/modular/modsym/p1list_nf.py
index 7a91d353e3..b71fc8aac4 100644
--- a/src/sage/modular/modsym/p1list_nf.py
+++ b/src/sage/modular/modsym/p1list_nf.py
@@ -956,7 +956,7 @@ class P1NFList(SageObject):
sage: N = k.ideal(a + 1)
sage: P = P1NFList(N)
sage: u = k.unit_group().gens_values(); u
- [-1, a^3 + a^2 + a + 12, a^3 + 3*a^2 - 1]
+ [-1, -a^3 - a^2 - a - 12, -a^3 - 3*a^2 + 1]
sage: P.apply_J_epsilon(3, u[2]^2)==P.apply_J_epsilon(P.apply_J_epsilon(3, u[2]),u[2])
True
"""
diff --git a/src/sage/modular/multiple_zeta.py b/src/sage/modular/multiple_zeta.py
index d42be82bd9..5f0057474c 100644
--- a/src/sage/modular/multiple_zeta.py
+++ b/src/sage/modular/multiple_zeta.py
@@ -457,7 +457,7 @@ class MultizetaValues(UniqueRepresentation):
"""
self.prec = int(prec)
self.max_weight = int(max_weight)
- self._data = pari.zetamultall(self.max_weight, self.prec)
+ self._data = pari.zetamultall(self.max_weight, precision=self.prec)
def update(self, max_weight, prec):
"""
diff --git a/src/sage/modules/fg_pid/fgp_element.py b/src/sage/modules/fg_pid/fgp_element.py
index 53857d31a0..6557b7f308 100644
--- a/src/sage/modules/fg_pid/fgp_element.py
+++ b/src/sage/modules/fg_pid/fgp_element.py
@@ -39,7 +39,7 @@ class FGP_Element(ModuleElement):
sage: V = span([[1/2,1,1],[3/2,2,1],[0,0,1]],ZZ); W = V.span([2*V.0+4*V.1, 9*V.0+12*V.1, 4*V.2])
sage: Q = V/W
sage: x = Q(V.0-V.1); x #indirect doctest
- (0, 3)
+ (0, 9)
sage: isinstance(x, sage.modules.fg_pid.fgp_element.FGP_Element)
True
sage: type(x)
@@ -94,14 +94,14 @@ class FGP_Element(ModuleElement):
sage: Q.1
(0, 1)
sage: Q.0.lift()
- (0, 0, 1)
+ (0, -6, 1)
sage: Q.1.lift()
- (0, 2, 0)
+ (0, -2, 0)
sage: x = Q(V.0); x
- (0, 4)
+ (0, 8)
sage: x.lift()
(1/2, 0, 0)
- sage: x == 4*Q.1
+ sage: x == 8*Q.1
True
sage: x.lift().parent() == V
True
@@ -158,9 +158,9 @@ class FGP_Element(ModuleElement):
We test canonical coercion from V and W.
sage: Q.0 + V.0
- (1, 4)
+ (1, 8)
sage: V.0 + Q.0
- (1, 4)
+ (1, 8)
sage: W.0 + Q.0
(1, 0)
sage: W.0 + Q.0 == Q.0
@@ -291,7 +291,7 @@ class FGP_Element(ModuleElement):
sage: V = span([[1/2,1,1],[3/2,2,1],[0,0,1]],ZZ); W = V.span([2*V.0+4*V.1, 9*V.0+12*V.1, 4*V.2])
sage: Q = V/W
sage: Q(V.1)._repr_()
- '(0, 1)'
+ '(0, 11)'
"""
return repr(self.vector())
diff --git a/src/sage/modules/fg_pid/fgp_module.py b/src/sage/modules/fg_pid/fgp_module.py
index 35f7cdaa17..5a700d808e 100644
--- a/src/sage/modules/fg_pid/fgp_module.py
+++ b/src/sage/modules/fg_pid/fgp_module.py
@@ -70,17 +70,17 @@ the technical note has a V that need not be equal to V0, in general. ::
sage: M0.optimized()[0].V()
Free module of degree 3 and rank 2 over Integer Ring
User basis matrix:
- [0 0 1]
- [0 2 0]
+ [ 0 -8 1]
+ [ 0 -2 0]
Create elements of M0 either by coercing in elements of V0, getting generators,
or coercing in a list or tuple or coercing in 0. Finally, one can express an
element as a linear combination of the smith form generators ::
sage: M0(V0.0)
- (0, 14)
+ (0, 2)
sage: M0(V0.0 + W0.0) # no difference modulo W0
- (0, 14)
+ (0, 2)
sage: M0.linear_combination_of_smith_form_gens([3,20])
(3, 4)
sage: 3*M0.0 + 20*M0.1
@@ -93,9 +93,9 @@ coerces to V0, then take the equivalence class modulo W0. ::
sage: x = M0.0 - M0.1; x
(1, 15)
sage: x.lift()
- (0, -2, 1)
+ (0, -6, 1)
sage: M0(vector([1/2,0,0]))
- (0, 14)
+ (0, 2)
sage: x.additive_order()
16
@@ -144,7 +144,7 @@ You can explicitly coerce elements of the kernel into M0 though. ::
sage: M0(K.0)
(2, 0)
sage: M0(K.1)
- (3, 1)
+ (1, 13)
sage: f(M0(K.0))
(0)
sage: f(M0(K.1))
@@ -180,7 +180,7 @@ TESTS::
sage: Q.linear_combination_of_smith_form_gens([1,3])
(1, 3)
sage: Q(V([1,3,4]))
- (0, 11)
+ (0, 1)
sage: Q(W([1,16,0]))
(0, 0)
sage: V = span([[1/2,1,1],[3/2,2,1],[0,0,1]],QQ)
@@ -632,7 +632,7 @@ class FGP_Module_class(Module):
sage: W = V.span([2*V.0+4*V.1, 9*V.0+12*V.1, 4*V.2])
sage: Q = V/W
sage: x = Q(V.0-V.1); x # indirect doctest
- (0, 3)
+ (0, 9)
sage: type(x)
<class 'sage.modules.fg_pid.fgp_module.FGP_Module_class_with_category.element_class'>
sage: x is Q(x)
@@ -931,9 +931,9 @@ class FGP_Module_class(Module):
sage: Q = V/W
sage: Q._smith_form()
(
- [ 1 0 0] [1 0 0] [ 1 0 -8]
- [ 0 4 0] [0 0 1] [ 0 0 1]
- [ 0 0 12], [0 1 0], [ 0 1 0]
+ [ 1 0 0] [ 1 0 1] [ 1 -4 20]
+ [ 0 4 0] [ 0 -1 1] [ 0 0 -1]
+ [ 0 0 12], [ 0 -1 0], [ 0 1 -3]
)
"""
return self._relative_matrix().smith_form()
@@ -1026,7 +1026,7 @@ class FGP_Module_class(Module):
sage: Q.smith_form_gens()
((1, 0), (0, 1))
sage: [x.lift() for x in Q.smith_form_gens()]
- [(0, 0, 1), (0, 1, 0)]
+ [(0, -3, 1), (0, -1, 0)]
"""
# Get the rightmost transformation in the Smith form
_, _, X = self._smith_form()
@@ -1067,18 +1067,18 @@ class FGP_Module_class(Module):
[ 0 0 0 1/3 0]
[ 0 0 0 0 2/3]
sage: D.gens_to_smith()
- [0 3 0]
+ [0 3 6]
[0 0 3]
- [0 2 0]
- [1 0 0]
- [0 0 4]
+ [0 4 4]
+ [1 2 0]
+ [0 0 8]
sage: T = D.gens_to_smith()*D.smith_to_gens()
sage: T
- [ 3 0 15 0 0]
- [ 0 33 0 0 3]
- [ 2 0 10 0 0]
- [ 0 0 0 1 0]
- [ 0 44 0 0 4]
+ [27 48 3 0 60]
+ [12 21 0 0 24]
+ [20 36 4 0 48]
+ [ 2 4 3 1 9]
+ [32 56 0 0 64]
The matrix `T` now satisfies a certain congruence::
@@ -1120,14 +1120,14 @@ class FGP_Module_class(Module):
[ 0 0 0 1/3 0]
[ 0 0 0 0 2/3]
sage: D.smith_to_gens()
- [ 0 0 0 1 0]
- [ 1 0 5 0 0]
- [ 0 11 0 0 1]
+ [0 0 1 1 1]
+ [1 2 1 0 4]
+ [4 7 0 0 8]
sage: T = D.smith_to_gens()*D.gens_to_smith()
sage: T
- [ 1 0 0]
- [ 0 13 0]
- [ 0 0 37]
+ [ 1 6 12]
+ [ 0 7 48]
+ [ 0 12 109]
This matrix satisfies the congruence::
@@ -1148,7 +1148,7 @@ class FGP_Module_class(Module):
of the user defined generators that is x::
sage: x.vector() * D.smith_to_gens()
- (2, 33, 10, 1, 3)
+ (14, 25, 3, 1, 33)
"""
if self.base_ring() != ZZ:
# it is not
@@ -1196,7 +1196,7 @@ class FGP_Module_class(Module):
sage: gens = [V(g) for g in gens]
sage: D = FGP_with_gens(V, W, gens)
sage: D.gens()
- ((0, 3, 0), (0, 0, 3), (0, 2, 0), (1, 0, 0), (0, 0, 8))
+ ((0, 3, 6), (0, 0, 9), (0, 4, 4), (1, 2, 0), (0, 0, 4))
We create some element of D::
@@ -1209,12 +1209,12 @@ class FGP_Module_class(Module):
sage: v = D.gens_vector(x)
sage: v
- (2, 9, 10, 1, 33)
+ (26, 11, 3, 1, 18)
The output can be further reduced::
sage: D.gens_vector(x, reduce=True)
- (0, 1, 1, 1, 0)
+ (0, 3, 0, 1, 0)
Let us check::
@@ -1278,28 +1278,28 @@ class FGP_Module_class(Module):
sage: O.V()
Free module of degree 3 and rank 2 over Integer Ring
User basis matrix:
- [0 0 1]
- [0 2 0]
+ [ 0 -6 1]
+ [ 0 -2 0]
sage: phi = Q.hom([Q.0, 4*Q.1])
sage: x = Q(V.0); x
- (0, 4)
+ (0, 8)
sage: Q.coordinate_vector(x, reduce=True)
- (0, 4)
+ (0, 8)
sage: Q.coordinate_vector(-x, reduce=False) # random
- (0, -4)
- sage: x == 4*Q.1
+ (0, -8)
+ sage: x == 8*Q.1
True
sage: x = Q(V.1); x
- (0, 1)
+ (0, 11)
sage: Q.coordinate_vector(x)
- (0, 1)
- sage: x == Q.1
+ (0, -1)
+ sage: x == -Q.1
True
sage: x = Q(V.2); x
- (1, 0)
+ (1, 9)
sage: Q.coordinate_vector(x)
- (1, 0)
- sage: x == Q.0
+ (1, -3)
+ sage: x == Q.0-3*Q.1
True
"""
try:
@@ -1407,8 +1407,8 @@ class FGP_Module_class(Module):
sage: O.V()
Free module of degree 3 and rank 2 over Integer Ring
User basis matrix:
- [0 0 1]
- [0 1 0]
+ [ 0 -3 1]
+ [ 0 -1 0]
sage: O.W()
Free module of degree 3 and rank 2 over Integer Ring
Echelon basis matrix:
@@ -1699,7 +1699,7 @@ class FGP_Module_class(Module):
sage: V = span([[1/2,1,1],[3/2,2,1],[0,0,1]],ZZ); W = V.span([2*V.0+4*V.1, 9*V.0+12*V.1, 4*V.2])
sage: Q = V/W
sage: Q.random_element()
- (1, 10)
+ (1, 11)
"""
return self(self._V.random_element(*args, **kwds))
diff --git a/src/sage/modules/fg_pid/fgp_morphism.py b/src/sage/modules/fg_pid/fgp_morphism.py
index fbbd479c6e..679965df96 100644
--- a/src/sage/modules/fg_pid/fgp_morphism.py
+++ b/src/sage/modules/fg_pid/fgp_morphism.py
@@ -258,20 +258,20 @@ class FGP_Morphism(Morphism):
sage: O.V()
Free module of degree 3 and rank 2 over Integer Ring
User basis matrix:
- [0 0 1]
- [0 2 0]
+ [ 0 -6 1]
+ [ 0 -2 0]
sage: phi = Q.hom([Q.0, 4*Q.1])
sage: x = Q(V.0); x
- (0, 4)
- sage: x == 4*Q.1
+ (0, 8)
+ sage: x == 8*Q.1
True
sage: x in O.V()
False
sage: phi(x)
- (0, 4)
+ (0, 8)
sage: phi(4*Q.1)
(0, 4)
- sage: phi(4*Q.1) == phi(x)
+ sage: phi(8*Q.1) == phi(x)
True
"""
from .fgp_module import is_FGP_Module
diff --git a/src/sage/modules/torsion_quadratic_module.py b/src/sage/modules/torsion_quadratic_module.py
index 39e7065ac4..6086d1180d 100644
--- a/src/sage/modules/torsion_quadratic_module.py
+++ b/src/sage/modules/torsion_quadratic_module.py
@@ -1230,24 +1230,24 @@ class TorsionQuadraticModule(FGP_Module_class, CachedRepresentation):
sage: q.twist(-1)
Finite quadratic module over Integer Ring with invariants (3, 9)
Gram matrix of the quadratic form with values in Q/Z:
- [2/3 0]
- [ 0 8/9]
+ [2/3 1/3]
+ [1/3 8/9]
This form is defined modulo `3`::
sage: q.twist(3)
Finite quadratic module over Integer Ring with invariants (3, 9)
Gram matrix of the quadratic form with values in Q/3Z:
- [ 1 0]
- [ 0 1/3]
+ [ 1 2]
+ [ 2 1/3]
The next form is defined modulo `4`::
sage: q.twist(4)
Finite quadratic module over Integer Ring with invariants (3, 9)
Gram matrix of the quadratic form with values in Q/4Z:
- [4/3 0]
- [ 0 4/9]
+ [4/3 8/3]
+ [8/3 4/9]
"""
s = self.base_ring().fraction_field()(s)
n = self.V().degree()
diff --git a/src/sage/quadratic_forms/genera/genus.py b/src/sage/quadratic_forms/genera/genus.py
index 2e773616e2..0daa55f84f 100644
--- a/src/sage/quadratic_forms/genera/genus.py
+++ b/src/sage/quadratic_forms/genera/genus.py
@@ -2897,18 +2897,18 @@ class GenusSymbol_global_ring(object):
sage: GS.discriminant_form()
Finite quadratic module over Integer Ring with invariants (2, 2, 4, 24)
Gram matrix of the quadratic form with values in Q/2Z:
- [ 1/2 0 0 0]
- [ 0 3/2 0 0]
- [ 0 0 7/4 0]
- [ 0 0 0 7/24]
+ [ 1/2 0 0 0]
+ [ 0 1/2 1/2 0]
+ [ 0 1/2 7/4 0]
+ [ 0 0 0 31/24]
sage: A = matrix.diagonal(ZZ, [1, -4, 6, 8])
sage: GS = Genus(A)
sage: GS.discriminant_form()
Finite quadratic module over Integer Ring with invariants (2, 4, 24)
Gram matrix of the quadratic form with values in Q/Z:
- [ 1/2 0 0]
- [ 0 3/4 0]
- [ 0 0 7/24]
+ [ 1/2 1/2 0]
+ [ 1/2 3/4 0]
+ [ 0 0 19/24]
"""
from sage.modules.torsion_quadratic_module import TorsionQuadraticForm
qL = []
diff --git a/src/sage/rings/finite_rings/finite_field_constructor.py b/src/sage/rings/finite_rings/finite_field_constructor.py
index 81ff16b1b6..46d56b923f 100644
--- a/src/sage/rings/finite_rings/finite_field_constructor.py
+++ b/src/sage/rings/finite_rings/finite_field_constructor.py
@@ -284,11 +284,6 @@ class FiniteFieldFactory(UniqueFactory):
(a generator of the multiplicative group), use
``modulus="primitive"`` if you need this::
- sage: K.<a> = GF(5^40)
- sage: a.multiplicative_order()
- 189478062869360049565633138
- sage: a.is_square()
- True
sage: K.<b> = GF(5^40, modulus="primitive")
sage: b.multiplicative_order()
9094947017729282379150390624
diff --git a/src/sage/rings/finite_rings/integer_mod_ring.py b/src/sage/rings/finite_rings/integer_mod_ring.py
index 0dcef0d21a..7b4f8b1b4b 100644
--- a/src/sage/rings/finite_rings/integer_mod_ring.py
+++ b/src/sage/rings/finite_rings/integer_mod_ring.py
@@ -626,7 +626,7 @@ class IntegerModRing_generic(quotient_ring.QuotientRing_generic):
sage: Integers(5).multiplicative_subgroups()
((2,), (4,), ())
sage: Integers(15).multiplicative_subgroups()
- ((11, 7), (4, 11), (8,), (11,), (14,), (7,), (4,), ())
+ ((14, 13), (4, 11), (8,), (11,), (14,), (7,), (4,), ())
sage: Integers(2).multiplicative_subgroups()
((),)
sage: len(Integers(341).multiplicative_subgroups())
diff --git a/src/sage/rings/finite_rings/residue_field.pyx b/src/sage/rings/finite_rings/residue_field.pyx
index cd4c2212c3..007a68e4c0 100644
--- a/src/sage/rings/finite_rings/residue_field.pyx
+++ b/src/sage/rings/finite_rings/residue_field.pyx
@@ -1055,7 +1055,7 @@ cdef class ReductionMap(Map):
sage: f = k.convert_map_from(K)
sage: s = f.section(); s
Lifting map:
- From: Residue field in abar of Fractional ideal (14*a^4 - 24*a^3 - 26*a^2 + 58*a - 15)
+ From: Residue field in abar of Fractional ideal (-14*a^4 + 24*a^3 + 26*a^2 - 58*a + 15)
To: Number Field in a with defining polynomial x^5 - 5*x + 2
sage: s(k.gen())
a
@@ -1268,7 +1268,7 @@ cdef class ResidueFieldHomomorphism_global(RingHomomorphism):
sage: f = k.coerce_map_from(K.ring_of_integers())
sage: s = f.section(); s
Lifting map:
- From: Residue field in abar of Fractional ideal (14*a^4 - 24*a^3 - 26*a^2 + 58*a - 15)
+ From: Residue field in abar of Fractional ideal (-14*a^4 + 24*a^3 + 26*a^2 - 58*a + 15)
To: Maximal Order in Number Field in a with defining polynomial x^5 - 5*x + 2
sage: s(k.gen())
a
@@ -1371,10 +1371,10 @@ cdef class LiftingMap(Section):
sage: F = K.factor(7)[0][0].residue_field()
sage: L = F.lift_map(); L
Lifting map:
- From: Residue field in abar of Fractional ideal (-2*a^4 + a^3 - 4*a^2 + 2*a - 1)
+ From: Residue field in abar of Fractional ideal (2*a^4 - a^3 + 4*a^2 - 2*a + 1)
To: Maximal Order in Number Field in a with defining polynomial x^5 + 2
sage: L.domain()
- Residue field in abar of Fractional ideal (-2*a^4 + a^3 - 4*a^2 + 2*a - 1)
+ Residue field in abar of Fractional ideal (2*a^4 - a^3 + 4*a^2 - 2*a + 1)
sage: K.<a> = CyclotomicField(7)
sage: F = K.factor(5)[0][0].residue_field()
@@ -1498,7 +1498,7 @@ cdef class LiftingMap(Section):
sage: F.<tmod> = K.factor(7)[0][0].residue_field()
sage: F.lift_map() #indirect doctest
Lifting map:
- From: Residue field in tmod of Fractional ideal (-3*theta_12^2 + 1)
+ From: Residue field in tmod of Fractional ideal (theta_12^2 + 2)
To: Maximal Order in Cyclotomic Field of order 12 and degree 4
"""
return "Lifting"
@@ -1515,7 +1515,7 @@ class ResidueFiniteField_prime_modn(ResidueField_generic, FiniteField_prime_modn
sage: P = K.ideal(29).factor()[1][0]
sage: k = ResidueField(P)
sage: k
- Residue field of Fractional ideal (a^2 + 2*a + 2)
+ Residue field of Fractional ideal (-a^2 - 2*a - 2)
sage: k.order()
29
sage: OK = K.maximal_order()
@@ -1597,7 +1597,7 @@ class ResidueFiniteField_prime_modn(ResidueField_generic, FiniteField_prime_modn
sage: P = K.ideal(29).factor()[1][0]
sage: k = ResidueField(P)
sage: k
- Residue field of Fractional ideal (a^2 + 2*a + 2)
+ Residue field of Fractional ideal (-a^2 - 2*a - 2)
sage: OK = K.maximal_order()
sage: c = OK(a)
sage: b = k(a); b
diff --git a/src/sage/rings/integer.pyx b/src/sage/rings/integer.pyx
index 77a3a18913..421a90e10e 100644
--- a/src/sage/rings/integer.pyx
+++ b/src/sage/rings/integer.pyx
@@ -5474,7 +5474,7 @@ cdef class Integer(sage.structure.element.EuclideanDomainElement):
sage: 3._bnfisnorm(QuadraticField(-1, 'i'))
(1, 3)
sage: 7._bnfisnorm(CyclotomicField(7))
- (-zeta7^5 - zeta7^4 - 2*zeta7^3 - zeta7^2 - zeta7 - 1, 1)
+ (zeta7^5 - zeta7^2, 1)
"""
from sage.rings.rational_field import QQ
return QQ(self)._bnfisnorm(K, proof=proof, extra_primes=extra_primes)
diff --git a/src/sage/rings/number_field/S_unit_solver.py b/src/sage/rings/number_field/S_unit_solver.py
index 3d6601d536..ba8b5164f0 100644
--- a/src/sage/rings/number_field/S_unit_solver.py
+++ b/src/sage/rings/number_field/S_unit_solver.py
@@ -24,10 +24,10 @@ EXAMPLES::
sage: from sage.rings.number_field.S_unit_solver import solve_S_unit_equation, eq_up_to_order
sage: K.<xi> = NumberField(x^2+x+1)
sage: S = K.primes_above(3)
- sage: expected = [((2, 1), (4, 0), xi + 2, -xi - 1),
- ....: ((5, -1), (4, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
- ....: ((5, 0), (1, 0), -xi, xi + 1),
- ....: ((1, 1), (2, 0), -xi + 1, xi)]
+ sage: expected = [((0, 1), (4, 0), xi + 2, -xi - 1),
+ ....: ((1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
+ ....: ((1, 0), (5, 0), xi + 1, -xi),
+ ....: ((2, 0), (5, 1), xi, -xi + 1)]
sage: sols = solve_S_unit_equation(K, S, 200)
sage: eq_up_to_order(sols, expected)
True
@@ -1780,20 +1780,20 @@ def sieve_ordering(SUK, q):
sage: SUK = K.S_unit_group(S=3)
sage: sieve_data = list(sieve_ordering(SUK, 19))
sage: sieve_data[0]
- (Fractional ideal (-2*xi^2 + 3),
- Fractional ideal (xi - 3),
- Fractional ideal (2*xi + 1))
+ (Fractional ideal (xi - 3),
+ Fractional ideal (-2*xi^2 + 3),
+ Fractional ideal (2*xi + 1))
sage: sieve_data[1]
- (Residue field of Fractional ideal (-2*xi^2 + 3),
- Residue field of Fractional ideal (xi - 3),
- Residue field of Fractional ideal (2*xi + 1))
+ (Residue field of Fractional ideal (xi - 3),
+ Residue field of Fractional ideal (-2*xi^2 + 3),
+ Residue field of Fractional ideal (2*xi + 1))
sage: sieve_data[2]
- ([18, 9, 16, 8], [18, 7, 10, 4], [18, 3, 12, 10])
+ ([18, 7, 16, 4], [18, 9, 12, 8], [18, 3, 10, 10])
sage: sieve_data[3]
- (972, 972, 3888)
+ (486, 648, 11664)
"""
K = SUK.number_field()
@@ -2654,10 +2654,10 @@ def sieve_below_bound(K, S, bound=10, bump=10, split_primes_list=[], verbose=Fal
sage: S = SUK.primes()
sage: sols = sieve_below_bound(K, S, 10)
sage: expected = [
- ....: ((5, -1), (4, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
- ....: ((2, 1), (4, 0), xi + 2, -xi - 1),
- ....: ((2, 0), (1, 1), xi, -xi + 1),
- ....: ((5, 0), (1, 0), -xi, xi + 1)]
+ ....: ((1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
+ ....: ((0, 1), (4, 0), xi + 2, -xi - 1),
+ ....: ((2, 0), (5, 1), xi, -xi + 1),
+ ....: ((1, 0), (5, 0), xi + 1, -xi)]
sage: eq_up_to_order(sols, expected)
True
"""
@@ -2715,10 +2715,10 @@ def solve_S_unit_equation(K, S, prec=106, include_exponents=True, include_bound=
sage: S = K.primes_above(3)
sage: sols = solve_S_unit_equation(K, S, 200)
sage: expected = [
- ....: ((2, 1), (4, 0), xi + 2, -xi - 1),
- ....: ((5, -1), (4, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
- ....: ((5, 0), (1, 0), -xi, xi + 1),
- ....: ((1, 1), (2, 0), -xi + 1, xi)]
+ ....: ((0, 1), (4, 0), xi + 2, -xi - 1),
+ ....: ((1, -1), (0, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
+ ....: ((1, 0), (5, 0), xi + 1, -xi),
+ ....: ((2, 0), (5, 1), xi, -xi + 1)]
sage: eq_up_to_order(sols, expected)
True
@@ -2726,7 +2726,7 @@ def solve_S_unit_equation(K, S, prec=106, include_exponents=True, include_bound=
sage: solutions, bound = solve_S_unit_equation(K, S, 100, include_bound=True)
sage: bound
- 6
+ 7
You can omit the exponent vectors::
diff --git a/src/sage/rings/number_field/class_group.py b/src/sage/rings/number_field/class_group.py
index 46d0ca8c9d..1ad6d583a8 100644
--- a/src/sage/rings/number_field/class_group.py
+++ b/src/sage/rings/number_field/class_group.py
@@ -157,7 +157,7 @@ class FractionalIdealClass(AbelianGroupWithValuesElement):
sage: C=K.class_group()
sage: c = C(2, a)
sage: c^2
- Fractional ideal class (2, a^2 + 2*a - 1)
+ Fractional ideal class (4, a)
sage: c^3
Trivial principal fractional ideal class
sage: c^1000
@@ -467,7 +467,7 @@ class ClassGroup(AbelianGroupWithValues_class):
sage: CK = K.class_group()
sage: CL = L.class_group()
sage: [CL(I).exponents() for I in CK]
- [(0,), (4,), (2,)]
+ [(0,), (2,), (4,)]
"""
if isinstance(args[0], FractionalIdealClass):
return self.element_class(self, None, self._number_field.ideal(args[0].ideal()))
diff --git a/src/sage/rings/number_field/number_field.py b/src/sage/rings/number_field/number_field.py
index b0fbfffb96..937f7f533d 100644
--- a/src/sage/rings/number_field/number_field.py
+++ b/src/sage/rings/number_field/number_field.py
@@ -3513,7 +3513,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
sage: L.<b> = K.extension(x^2 - 3, x^2 + 1)
sage: M.<c> = L.extension(x^2 + 1)
sage: L.ideal(K.ideal(2, a))
- Fractional ideal (a)
+ Fractional ideal (-a)
sage: M.ideal(K.ideal(2, a)) == M.ideal(a*(b - c)/2)
True
@@ -4681,7 +4681,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
1/13*a^2 + 7/13*a - 332/13,
-1/13*a^2 + 6/13*a + 345/13,
-1,
- 2/13*a^2 + 1/13*a - 755/13]
+ -2/13*a^2 - 1/13*a + 755/13]
sage: units[5] in (1/13*a^2 - 19/13*a - 7/13, 1/13*a^2 + 20/13*a - 7/13)
True
sage: len(units) == 6
@@ -4723,8 +4723,8 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
sage: K.<a> = QuadraticField(-105)
sage: K._S_class_group_quotient_matrix((K.ideal(11, a + 4),))
[0 0]
- [1 0]
[0 1]
+ [1 0]
"""
from sage.matrix.constructor import matrix
S_clgp_gens = self._S_class_group_and_units(S)[1]
@@ -4845,7 +4845,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
1/13*a^2 + 7/13*a - 332/13,
-1/13*a^2 + 6/13*a + 345/13,
-1,
- 2/13*a^2 + 1/13*a - 755/13]
+ -2/13*a^2 - 1/13*a + 755/13]
sage: gens[5] in (1/13*a^2 - 19/13*a - 7/13, 1/13*a^2 + 20/13*a - 7/13)
True
sage: gens[6] in (-1/13*a^2 + 45/13*a - 97/13, 1/13*a^2 - 45/13*a + 97/13)
@@ -6022,28 +6022,37 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
try:
return self._integral_basis_dict[v]
except (AttributeError, KeyError):
- f = self.pari_polynomial("y")
- if v:
- B = f.nfbasis(fa=v)
- elif self._assume_disc_small:
- B = f.nfbasis(1)
- elif not important:
- # Trial divide the discriminant with primes up to 10^6
- m = self.pari_polynomial().poldisc().abs().factor(limit=10**6)
- # Since we only need a *squarefree* factorization for
- # primes with exponent 1, we need trial division up to D^(1/3)
- # instead of D^(1/2).
- trialdivlimit2 = pari(10**12)
- trialdivlimit3 = pari(10**18)
- if all(p < trialdivlimit2 or (e == 1 and p < trialdivlimit3) or p.isprime() for p, e in zip(m[0], m[1])):
- B = f.nfbasis(fa = m)
- else:
- raise RuntimeError("Unable to factor discriminant with trial division")
+ pass
+
+ f = self.pari_polynomial("y")
+ if v:
+ # NOTE: here we make pari know about potentially big primes factors of
+ # the discriminant, see
+ # https://pari.math.u-bordeaux.fr/cgi-bin/bugreport.cgi?bug=2257
+ primelimit = pari.default("primelimit")
+ primes = [p for p in v if p > primelimit]
+ if primes:
+ pari.addprimes(primes)
+ B = f.nfbasis(fa=v)
+ elif self._assume_disc_small:
+ B = f.nfbasis(1)
+ elif not important:
+ # Trial divide the discriminant with primes up to 10^6
+ m = self.pari_polynomial().poldisc().abs().factor(limit=10**6)
+ # Since we only need a *squarefree* factorization for
+ # primes with exponent 1, we need trial division up to D^(1/3)
+ # instead of D^(1/2).
+ trialdivlimit2 = pari(10**12)
+ trialdivlimit3 = pari(10**18)
+ if all(p < trialdivlimit2 or (e == 1 and p < trialdivlimit3) or p.isprime() for p, e in zip(m[0], m[1])):
+ B = f.nfbasis(fa = m)
else:
- B = f.nfbasis()
+ raise RuntimeError("Unable to factor discriminant with trial division")
+ else:
+ B = f.nfbasis()
- self._integral_basis_dict[v] = B
- return B
+ self._integral_basis_dict[v] = B
+ return B
def reduced_basis(self, prec=None):
r"""
@@ -6729,7 +6738,8 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
"""
Return generators for the unit group modulo torsion.
- ALGORITHM: Uses PARI's :pari:`bnfunit` command.
+ ALGORITHM: Uses PARI's :pari:`bnfinit` command (that computes fundamental units
+ among other things).
INPUT:
@@ -6751,7 +6761,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
sage: A = x^4 - 10*x^3 + 20*5*x^2 - 15*5^2*x + 11*5^3
sage: K = NumberField(A, 'a')
sage: K.units()
- (8/275*a^3 - 12/55*a^2 + 15/11*a - 3,)
+ (-1/275*a^3 - 4/55*a^2 + 5/11*a - 3,)
For big number fields, provably computing the unit group can
take a very long time. In this case, one can ask for the
@@ -6762,14 +6772,14 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
sage: K.units(proof=True) # takes forever, not tested
...
sage: K.units(proof=False) # result not independently verified
- (a^9 + a - 1,
- a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2,
- a^16 - a^15 + a^14 - a^12 + a^11 - a^10 - a^8 + a^7 - 2*a^6 + a^4 - 3*a^3 + 2*a^2 - 2*a + 1,
+ (-a^9 - a + 1,
+ -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 - a^7 + 2*a^6 - a^4 + 3*a^3 - 2*a^2 + 2*a - 1,
2*a^16 - a^14 - a^13 + 3*a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4,
- 2*a^16 - 3*a^15 + 3*a^14 - 3*a^13 + 3*a^12 - a^11 + a^9 - 3*a^8 + 4*a^7 - 5*a^6 + 6*a^5 - 4*a^4 + 3*a^3 - 2*a^2 - 2*a + 4,
- a^16 - a^15 - 3*a^14 - 4*a^13 - 4*a^12 - 3*a^11 - a^10 + 2*a^9 + 4*a^8 + 5*a^7 + 4*a^6 + 2*a^5 - 2*a^4 - 6*a^3 - 9*a^2 - 9*a - 7,
a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1,
- 5*a^16 - 6*a^14 + a^13 + 7*a^12 - 2*a^11 - 7*a^10 + 4*a^9 + 7*a^8 - 6*a^7 - 7*a^6 + 8*a^5 + 6*a^4 - 11*a^3 - 5*a^2 + 13*a + 4)
+ -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2,
+ -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4,
+ a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2,
+ -a^14 - a^13 + a^12 + 2*a^10 + a^8 - 2*a^7 - 2*a^6 + 2*a^3 - a^2 + 2*a - 2)
TESTS:
@@ -6778,7 +6788,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
sage: K.<a> = NumberField(1/2*x^2 - 1/6)
sage: K.units()
- (3*a - 2,)
+ (-3*a + 2,)
"""
proof = proof_flag(proof)
@@ -6796,7 +6806,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
pass
# get PARI to compute the units
- B = self.pari_bnf(proof).bnfunit()
+ B = self.pari_bnf(proof).bnf_get_fu()
B = tuple(self(b, check=False) for b in B)
if proof:
# cache the provable results and return them
@@ -6811,7 +6821,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
"""
Return the unit group (including torsion) of this number field.
- ALGORITHM: Uses PARI's :pari:`bnfunit` command.
+ ALGORITHM: Uses PARI's :pari:`bnfinit` and :pari:`bnfunits`.
INPUT:
@@ -6857,7 +6867,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
sage: U.gens()
(u0, u1, u2, u3, u4, u5, u6, u7, u8)
sage: U.gens_values() # result not independently verified
- [-1, a^9 + a - 1, a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2, a^16 - a^15 + a^14 - a^12 + a^11 - a^10 - a^8 + a^7 - 2*a^6 + a^4 - 3*a^3 + 2*a^2 - 2*a + 1, 2*a^16 - a^14 - a^13 + 3*a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4, 2*a^16 - 3*a^15 + 3*a^14 - 3*a^13 + 3*a^12 - a^11 + a^9 - 3*a^8 + 4*a^7 - 5*a^6 + 6*a^5 - 4*a^4 + 3*a^3 - 2*a^2 - 2*a + 4, a^16 - a^15 - 3*a^14 - 4*a^13 - 4*a^12 - 3*a^11 - a^10 + 2*a^9 + 4*a^8 + 5*a^7 + 4*a^6 + 2*a^5 - 2*a^4 - 6*a^3 - 9*a^2 - 9*a - 7, a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1, 5*a^16 - 6*a^14 + a^13 + 7*a^12 - 2*a^11 - 7*a^10 + 4*a^9 + 7*a^8 - 6*a^7 - 7*a^6 + 8*a^5 + 6*a^4 - 11*a^3 - 5*a^2 + 13*a + 4]
+ [-1, -a^9 - a + 1, -a^16 + a^15 - a^14 + a^12 - a^11 + a^10 + a^8 - a^7 + 2*a^6 - a^4 + 3*a^3 - 2*a^2 + 2*a - 1, 2*a^16 - a^14 - a^13 + 3*a^12 - 2*a^10 + a^9 + 3*a^8 - 3*a^6 + 3*a^5 + 3*a^4 - 2*a^3 - 2*a^2 + 3*a + 4, a^15 + a^14 + 2*a^11 + a^10 - a^9 + a^8 + 2*a^7 - a^5 + 2*a^3 - a^2 - 3*a + 1, -a^16 - a^15 - a^14 - a^13 - a^12 - a^11 - a^10 - a^9 - a^8 - a^7 - a^6 - a^5 - a^4 - a^3 - a^2 + 2, -2*a^16 + 3*a^15 - 3*a^14 + 3*a^13 - 3*a^12 + a^11 - a^9 + 3*a^8 - 4*a^7 + 5*a^6 - 6*a^5 + 4*a^4 - 3*a^3 + 2*a^2 + 2*a - 4, a^15 - a^12 + a^10 - a^9 - 2*a^8 + 3*a^7 + a^6 - 3*a^5 + a^4 + 4*a^3 - 3*a^2 - 2*a + 2, -a^14 - a^13 + a^12 + 2*a^10 + a^8 - 2*a^7 - 2*a^6 + 2*a^3 - a^2 + 2*a - 2]
"""
proof = proof_flag(proof)
@@ -7045,7 +7055,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
sage: solutions, bound = K.S_unit_solutions(S, prec=100, include_bound=True)
sage: bound
- 6
+ 7
"""
from .S_unit_solver import solve_S_unit_equation
return solve_S_unit_equation(self, S, prec, include_exponents, include_bound, proof)
@@ -10884,9 +10894,9 @@ class NumberField_cyclotomic(NumberField_absolute):
EXAMPLES::
sage: k5.<z> = CyclotomicField(5)
- sage: gap('E(5)^7 + 3')
+ sage: w = libgap.eval('E(5)^7 + 3')
+ sage: w
-3*E(5)-2*E(5)^2-3*E(5)^3-3*E(5)^4
- sage: w = gap('E(5)^7 + 3')
sage: z^7 + 3
z^2 + 3
sage: k5(w) # indirect doctest
@@ -10897,7 +10907,7 @@ class NumberField_cyclotomic(NumberField_absolute):
sage: F = CyclotomicField(8)
sage: z = F.gen()
- sage: a = gap(z+1/z); a
+ sage: a = libgap(z+1/z); a
E(8)-E(8)^3
sage: F(a)
-zeta8^3 + zeta8
@@ -10911,6 +10921,7 @@ class NumberField_cyclotomic(NumberField_absolute):
It also works with the old pexpect interface to GAP::
+ sage: a = gap(z + 1/z)
sage: b = gap(Matrix(F,[[z^2,1],[0,a+1]])); b
[ [ E(4), 1 ], [ 0, 1+E(8)-E(8)^3 ] ]
sage: b[1,2]
diff --git a/src/sage/rings/number_field/number_field_element.pyx b/src/sage/rings/number_field/number_field_element.pyx
index 0c2499bfee..88bfc6d6d8 100644
--- a/src/sage/rings/number_field/number_field_element.pyx
+++ b/src/sage/rings/number_field/number_field_element.pyx
@@ -1629,7 +1629,7 @@ cdef class NumberFieldElement(FieldElement):
sage: Q.<X> = K[]
sage: L.<b> = NumberField(X^4 + a)
sage: t = (-a).is_norm(L, element=True); t
- (True, b^3 + 1)
+ (True, -b^3 - 1)
sage: t[1].norm(K)
-a
@@ -1744,11 +1744,11 @@ cdef class NumberFieldElement(FieldElement):
sage: Q.<X> = K[]
sage: L.<b> = NumberField(X^4 + a)
sage: t = (-a)._rnfisnorm(L); t
- (b^3 + 1, 1)
+ (-b^3 - 1, 1)
sage: t[0].norm(K)
-a
sage: t = K(3)._rnfisnorm(L); t
- (-b^3 - a*b^2 - a^2*b + 1, 3*a^2 - 3*a + 6)
+ (b^3 + a*b^2 + a^2*b - 1, 3*a^2 - 3*a + 6)
sage: t[0].norm(K)*t[1]
3
@@ -1801,7 +1801,7 @@ cdef class NumberFieldElement(FieldElement):
raise ValueError("L (=%s) must be a relative number field with base field K (=%s) in rnfisnorm" % (L, K))
rnf_data = K.pari_rnfnorm_data(L, proof=proof)
- x, q = self.__pari__().rnfisnorm(rnf_data)
+ x, q = pari.rnfisnorm(rnf_data, self)
return L(x, check=False), K(q, check=False)
def _mpfr_(self, R):
diff --git a/src/sage/rings/number_field/number_field_ideal.py b/src/sage/rings/number_field/number_field_ideal.py
index 2e6a368843..aa2cc3c297 100644
--- a/src/sage/rings/number_field/number_field_ideal.py
+++ b/src/sage/rings/number_field/number_field_ideal.py
@@ -231,7 +231,7 @@ class NumberFieldIdeal(Ideal_generic):
sage: K.<a> = NumberField(x^2 + 3); K
Number Field in a with defining polynomial x^2 + 3
sage: f = K.factor(15); f
- (Fractional ideal (-a))^2 * (Fractional ideal (5))
+ (Fractional ideal (1/2*a + 3/2))^2 * (Fractional ideal (5))
sage: (f[0][0] < f[1][0])
True
sage: (f[0][0] == f[0][0])
@@ -620,7 +620,7 @@ class NumberFieldIdeal(Ideal_generic):
sage: K.<z> = CyclotomicField(7)
sage: I = K.factor(11)[0][0]; I
- Fractional ideal (-2*z^4 - 2*z^2 - 2*z + 1)
+ Fractional ideal (-3*z^4 - 2*z^3 - 2*z^2 - 2)
sage: A = I.free_module()
sage: A # warning -- choice of basis can be somewhat random
Free module of degree 6 and rank 6 over Integer Ring
@@ -3118,7 +3118,7 @@ class NumberFieldFractionalIdeal(MultiplicativeGroupElement, NumberFieldIdeal):
sage: K.<a> = NumberField(x^5 + 2); K
Number Field in a with defining polynomial x^5 + 2
sage: f = K.factor(19); f
- (Fractional ideal (a^2 + a - 3)) * (Fractional ideal (-2*a^4 - a^2 + 2*a - 1)) * (Fractional ideal (a^2 + a - 1))
+ (Fractional ideal (a^2 + a - 3)) * (Fractional ideal (2*a^4 + a^2 - 2*a + 1)) * (Fractional ideal (a^2 + a - 1))
sage: [i.residue_class_degree() for i, _ in f]
[2, 2, 1]
"""
diff --git a/src/sage/rings/number_field/number_field_ideal_rel.py b/src/sage/rings/number_field/number_field_ideal_rel.py
index 37c20150ad..078682fa1f 100644
--- a/src/sage/rings/number_field/number_field_ideal_rel.py
+++ b/src/sage/rings/number_field/number_field_ideal_rel.py
@@ -18,7 +18,7 @@ EXAMPLES::
sage: G = [from_A(z) for z in I.gens()]; G
[7, -2*b*a - 1]
sage: K.fractional_ideal(G)
- Fractional ideal (2*b*a + 1)
+ Fractional ideal ((1/2*b + 2)*a - 1/2*b + 2)
sage: K.fractional_ideal(G).absolute_norm().factor()
7^2
"""
diff --git a/src/sage/rings/number_field/number_field_rel.py b/src/sage/rings/number_field/number_field_rel.py
index 312cbdf874..436af50e87 100644
--- a/src/sage/rings/number_field/number_field_rel.py
+++ b/src/sage/rings/number_field/number_field_rel.py
@@ -396,18 +396,18 @@ class NumberField_relative(NumberField_generic):
sage: K.<c> = F.extension(Y^2 - (1 + a)*(a + b)*a*b)
sage: K.subfields(2)
[
- (Number Field in c0 with defining polynomial x^2 - 24*x + 72, Ring morphism:
- From: Number Field in c0 with defining polynomial x^2 - 24*x + 72
+ (Number Field in c0 with defining polynomial x^2 - 24*x + 96, Ring morphism:
+ From: Number Field in c0 with defining polynomial x^2 - 24*x + 96
To: Number Field in c with defining polynomial Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field
- Defn: c0 |--> -6*a + 12, None),
+ Defn: c0 |--> -4*b + 12, None),
(Number Field in c1 with defining polynomial x^2 - 24*x + 120, Ring morphism:
From: Number Field in c1 with defining polynomial x^2 - 24*x + 120
To: Number Field in c with defining polynomial Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field
Defn: c1 |--> 2*b*a + 12, None),
- (Number Field in c2 with defining polynomial x^2 - 24*x + 96, Ring morphism:
- From: Number Field in c2 with defining polynomial x^2 - 24*x + 96
+ (Number Field in c2 with defining polynomial x^2 - 24*x + 72, Ring morphism:
+ From: Number Field in c2 with defining polynomial x^2 - 24*x + 72
To: Number Field in c with defining polynomial Y^2 + (-2*b - 3)*a - 2*b - 6 over its base field
- Defn: c2 |--> -4*b + 12, None)
+ Defn: c2 |--> -6*a + 12, None)
]
sage: K.subfields(8, 'w')
[
diff --git a/src/sage/rings/number_field/order.py b/src/sage/rings/number_field/order.py
index b5cdeb2a96..be1548f7a2 100644
--- a/src/sage/rings/number_field/order.py
+++ b/src/sage/rings/number_field/order.py
@@ -2180,7 +2180,7 @@ def EisensteinIntegers(names="omega"):
sage: R
Eisenstein Integers in Number Field in omega with defining polynomial x^2 + x + 1 with omega = -0.50000000000000000? + 0.866025403784439?*I
sage: factor(3 + omega)
- (omega) * (-3*omega - 2)
+ (-1) * (-omega - 3)
sage: CC(omega)
-0.500000000000000 + 0.866025403784439*I
sage: omega.minpoly()
diff --git a/src/sage/rings/number_field/unit_group.py b/src/sage/rings/number_field/unit_group.py
index 5c94f7407d..2a3c617ca3 100644
--- a/src/sage/rings/number_field/unit_group.py
+++ b/src/sage/rings/number_field/unit_group.py
@@ -15,12 +15,12 @@ The first generator is a primitive root of unity in the field::
sage: UK.gens_values() # random
[-1/12*a^3 + 1/6*a, 1/24*a^3 + 1/4*a^2 - 1/12*a - 1]
sage: UK.gen(0).value()
- -1/12*a^3 + 1/6*a
+ 1/12*a^3 - 1/6*a
sage: UK.gen(0)
u0
sage: UK.gen(0) + K.one() # coerce abstract generator into number field
- -1/12*a^3 + 1/6*a + 1
+ 1/12*a^3 - 1/6*a + 1
sage: [u.multiplicative_order() for u in UK.gens()]
[4, +Infinity]
@@ -37,18 +37,18 @@ as elements of an abstract multiplicative group::
sage: UK(-1)
u0^2
sage: [UK(u) for u in (x^4-1).roots(K, multiplicities=False)]
- [1, u0^2, u0^3, u0]
+ [1, u0^2, u0, u0^3]
sage: UK.fundamental_units() # random
[1/24*a^3 + 1/4*a^2 - 1/12*a - 1]
sage: torsion_gen = UK.torsion_generator(); torsion_gen
u0
sage: torsion_gen.value()
- -1/12*a^3 + 1/6*a
+ 1/12*a^3 - 1/6*a
sage: UK.zeta_order()
4
sage: UK.roots_of_unity()
- [-1/12*a^3 + 1/6*a, -1, 1/12*a^3 - 1/6*a, 1]
+ [1/12*a^3 - 1/6*a, -1, -1/12*a^3 + 1/6*a, 1]
Exp and log functions provide maps between units as field elements and exponent
vectors with respect to the generators::
@@ -82,7 +82,7 @@ S-unit groups may be constructed, where S is a set of primes::
sage: SUK.rank()
4
sage: SUK.gens_values()
- [-1, a^2 + 1, a^5 + a^4 - a^2 - a - 1, a + 1, -a + 1]
+ [-1, a^2 + 1, -a^5 - a^4 + a^2 + a + 1, a + 1, a - 1]
sage: u = 9*prod(SUK.gens_values()); u
-18*a^5 - 18*a^4 - 18*a^3 - 9*a^2 + 9*a + 27
sage: SUK.log(u)
@@ -100,29 +100,29 @@ A relative number field example::
sage: UL.zeta_order()
24
sage: UL.roots_of_unity()
- [-b*a - b,
- b^2*a,
- b^3,
- a + 1,
- -b*a,
- -b^2,
- b^3*a + b^3,
- a,
- b,
+ [-b*a,
-b^2*a - b^2,
- b^3*a,
- -1,
- b*a + b,
- -b^2*a,
-b^3,
- -a - 1,
- b*a,
- b^2,
- -b^3*a - b^3,
-a,
+ -b*a - b,
+ -b^2,
+ b^3*a,
+ -a - 1,
-b,
+ b^2*a,
+ b^3*a + b^3,
+ -1,
+ b*a,
b^2*a + b^2,
+ b^3,
+ a,
+ b*a + b,
+ b^2,
-b^3*a,
+ a + 1,
+ b,
+ -b^2*a,
+ -b^3*a - b^3,
1]
A relative extension example, which worked thanks to the code review by F.W.Clarke::
@@ -199,7 +199,7 @@ class UnitGroup(AbelianGroupWithValues_class):
sage: UK.gen(5)
u5
sage: UK.gen(5).value()
- z^7 + z
+ -z^7 - z
An S-unit group::
@@ -216,7 +216,7 @@ class UnitGroup(AbelianGroupWithValues_class):
sage: SUK.zeta_order()
26
sage: SUK.log(21*z)
- (12, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
+ (25, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)
"""
# This structure is not a parent in the usual sense. The
# "elements" are NumberFieldElement_absolute. Instead, they should
@@ -250,7 +250,7 @@ class UnitGroup(AbelianGroupWithValues_class):
sage: UK.gens()
(u0, u1)
sage: UK.gens_values()
- [-1, 6*a - 37]
+ [-1, -6*a + 37]
sage: K.<a> = QuadraticField(-3)
sage: UK = K.unit_group(); UK
@@ -258,7 +258,7 @@ class UnitGroup(AbelianGroupWithValues_class):
sage: UK.gens()
(u,)
sage: UK.gens_values()
- [1/2*a + 1/2]
+ [-1/2*a + 1/2]
sage: K.<z> = CyclotomicField(13)
sage: UK = K.unit_group(); UK
@@ -323,34 +323,31 @@ class UnitGroup(AbelianGroupWithValues_class):
self.__S = S
self.__pS = pS = [P.pari_prime() for P in S]
- # compute the fundamental units via pari:
- fu = [K(u, check=False) for u in pK.bnfunit()]
- self.__nfu = len(fu)
-
- # compute the additional S-unit generators:
+ # compute units
+ # NOTE: old pari syntax for S-units (< 2.13.0): pK.bnfsunit(pS)
+ # NOTE: pari >= 2.13.0: the first component of the result of bnfunits
+ # are *all* units starting with S-units, followed by fundamental units
+ # followed by the torsion unit.
if S:
- self.__S_unit_data = pK.bnfsunit(pS)
- su = [K(u, check=False) for u in self.__S_unit_data[0]]
+ self.__S_unit_data = pK.bnfunits(pS)
else:
- su = []
- self.__nsu = len(su)
+ self.__S_unit_data = pK.bnfunits()
+ # TODO: converting the factored matrix representation of bnfunits into polynomial
+ # form is a *big* waste of time
+ su_fu_tu = [pK.nfbasistoalg(pK.nffactorback(z)) for z in self.__S_unit_data[0]]
+
+ self.__nfu = len(pK.bnf_get_fu()) # number of fundamental units
+ self.__nsu = len(su_fu_tu) - self.__nfu - 1 # number of S-units
+ self.__ntu = pK.bnf_get_tu()[0] # order of torsion
self.__rank = self.__nfu + self.__nsu
- # compute a torsion generator and pick the 'simplest' one:
- n, z = pK[7][3] # number of roots of unity and bnf.tu as in pari documentation
- n = ZZ(n)
- self.__ntu = n
- z = K(z, check=False)
-
- # If we replaced z by another torsion generator we would need
- # to allow for this in the dlog function! So we do not.
+ # Move the torsion unit first, then fundamental units then S-units
+ gens = [K(u, check=False) for u in su_fu_tu]
+ gens = [gens[-1]] + gens[self.__nsu:-1] + gens[:self.__nsu]
- # Store the actual generators (torsion first):
- gens = [z] + fu + su
- values = Sequence(gens, immutable=True, universe=self, check=False)
# Construct the abtract group:
- gens_orders = tuple([ZZ(n)]+[ZZ(0)]*(self.__rank))
- AbelianGroupWithValues_class.__init__(self, gens_orders, 'u', values, number_field)
+ gens_orders = tuple([ZZ(self.__ntu)]+[ZZ(0)]*(self.__rank))
+ AbelianGroupWithValues_class.__init__(self, gens_orders, 'u', gens, number_field)
def _element_constructor_(self, u):
"""
@@ -375,7 +372,7 @@ class UnitGroup(AbelianGroupWithValues_class):
sage: UK.gens()
(u0, u1)
sage: UK.gens_values()
- [-1, 6*a - 37]
+ [-1, -6*a + 37]
sage: UK.ngens()
2
sage: [UK(u) for u in UK.gens()]
@@ -394,8 +391,8 @@ class UnitGroup(AbelianGroupWithValues_class):
except TypeError:
raise ValueError("%s is not an element of %s"%(u,K))
if self.__S:
- m = pK.bnfissunit(self.__S_unit_data, pari(u)).mattranspose()
- if m.ncols()==0:
+ m = pK.bnfisunit(pari(u), self.__S_unit_data).mattranspose()
+ if m.ncols() == 0:
raise ValueError("%s is not an S-unit"%u)
else:
if not u.is_integral() or u.norm().abs() != 1:
@@ -405,9 +402,8 @@ class UnitGroup(AbelianGroupWithValues_class):
# convert column matrix to a list:
m = [ZZ(m[0,i].sage()) for i in range(m.ncols())]
- # NB pari puts the torsion after the fundamental units, before
- # the extra S-units but we have the torsion first:
- m = [m[self.__nfu]] + m[:self.__nfu] + m[self.__nfu+1:]
+ # NOTE: pari ordering for the units is (S-units, fundamental units, torsion unit)
+ m = [m[-1]] + m[self.__nsu:-1] + m[:self.__nsu]
return self.element_class(self, m)
@@ -527,9 +523,9 @@ class UnitGroup(AbelianGroupWithValues_class):
sage: U.zeta(2, all=True)
[-1]
sage: U.zeta(3)
- 1/2*z - 1/2
+ -1/2*z - 1/2
sage: U.zeta(3, all=True)
- [1/2*z - 1/2, -1/2*z - 1/2]
+ [-1/2*z - 1/2, 1/2*z - 1/2]
sage: U.zeta(4)
Traceback (most recent call last):
...
@@ -645,7 +641,7 @@ class UnitGroup(AbelianGroupWithValues_class):
sage: SUK = UnitGroup(K,S=2)
sage: v = (3,1,4,1,5,9,2)
sage: u = SUK.exp(v); u
- -8732*z^11 + 15496*z^10 + 51840*z^9 + 68804*z^8 + 51840*z^7 + 15496*z^6 - 8732*z^5 + 34216*z^3 + 64312*z^2 + 64312*z + 34216
+ 8732*z^11 - 15496*z^10 - 51840*z^9 - 68804*z^8 - 51840*z^7 - 15496*z^6 + 8732*z^5 - 34216*z^3 - 64312*z^2 - 64312*z - 34216
sage: SUK.log(u)
(3, 1, 4, 1, 5, 9, 2)
sage: SUK.log(u) == v
@@ -692,7 +688,7 @@ class UnitGroup(AbelianGroupWithValues_class):
sage: SUK = UnitGroup(K,S=2)
sage: v = (3,1,4,1,5,9,2)
sage: u = SUK.exp(v); u
- -8732*z^11 + 15496*z^10 + 51840*z^9 + 68804*z^8 + 51840*z^7 + 15496*z^6 - 8732*z^5 + 34216*z^3 + 64312*z^2 + 64312*z + 34216
+ 8732*z^11 - 15496*z^10 - 51840*z^9 - 68804*z^8 - 51840*z^7 - 15496*z^6 + 8732*z^5 - 34216*z^3 - 64312*z^2 - 64312*z - 34216
sage: SUK.log(u)
(3, 1, 4, 1, 5, 9, 2)
sage: SUK.log(u) == v
diff --git a/src/sage/rings/polynomial/multi_polynomial_ring.py b/src/sage/rings/polynomial/multi_polynomial_ring.py
index 077f380730..ce6e517c78 100644
--- a/src/sage/rings/polynomial/multi_polynomial_ring.py
+++ b/src/sage/rings/polynomial/multi_polynomial_ring.py
@@ -525,6 +525,8 @@ class MPolynomialRing_polydict( MPolynomialRing_macaulay2_repr, PolynomialRing_s
# univariate polynomials. Below, v is the variable
# with highest priority, and the x[i] are expressions
# in the remaining variables.
+ if x == 0:
+ return self.zero()
v = self.gens_dict_recursive()[str(x.variable())]
return sum(self(x[i]) * v ** i for i in range(x.poldegree() + 1))
diff --git a/src/sage/rings/polynomial/polynomial_element.pyx b/src/sage/rings/polynomial/polynomial_element.pyx
index b7f3058ce7..4615107773 100644
--- a/src/sage/rings/polynomial/polynomial_element.pyx
+++ b/src/sage/rings/polynomial/polynomial_element.pyx
@@ -7550,7 +7550,7 @@ cdef class Polynomial(CommutativeAlgebraElement):
[(-3.5074662110434039?e451, 1)]
sage: p = bigc*x + 1
sage: p.roots(ring=RR)
- [(0.000000000000000, 1)]
+ [(-2.85106096489671e-452, 1)]
sage: p.roots(ring=AA)
[(-2.8510609648967059?e-452, 1)]
sage: p.roots(ring=QQbar)
diff --git a/src/sage/rings/polynomial/polynomial_quotient_ring.py b/src/sage/rings/polynomial/polynomial_quotient_ring.py
index 1ed1faaf15..6d4bb74464 100644
--- a/src/sage/rings/polynomial/polynomial_quotient_ring.py
+++ b/src/sage/rings/polynomial/polynomial_quotient_ring.py
@@ -1305,7 +1305,16 @@ class PolynomialQuotientRing_generic(CommutativeRing):
fixed in :trac:`14489`)::
sage: S.S_class_group([K.ideal(a)])
- [((1/4*xbar^2 + 31/4, (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8, 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16, -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8), 6), ((-1/4*xbar^2 - 23/4, (1/8*a - 1/8)*xbar^2 + 23/8*a - 23/8, -1/16*xbar^3 - 1/16*xbar^2 - 23/16*xbar - 23/16, 1/16*a*xbar^3 + (-1/16*a - 1/8)*xbar^2 + 23/16*a*xbar - 23/16*a - 23/8), 2)]
+ [((1/4*xbar^2 + 31/4,
+ (-1/8*a + 1/8)*xbar^2 - 31/8*a + 31/8,
+ 1/16*xbar^3 + 1/16*xbar^2 + 31/16*xbar + 31/16,
+ -1/16*a*xbar^3 + (1/16*a + 1/8)*xbar^2 - 31/16*a*xbar + 31/16*a + 31/8),
+ 6),
+ ((-1/4*xbar^2 - 23/4,
+ 1/4*a*xbar^2 + 23/4*a,
+ -1/8*xbar^3 + 1/8*xbar^2 - 23/8*xbar + 23/8,
+ (1/16*a - 1/16)*xbar^3 + (-1/16*a + 1/16)*xbar^2 + (23/16*a - 23/16)*xbar - 23/16*a + 23/16),
+ 2)]
Note that all the returned values live where we expect them to::
diff --git a/src/sage/schemes/elliptic_curves/ell_finite_field.py b/src/sage/schemes/elliptic_curves/ell_finite_field.py
index 87fbec3b69..adf0d2c73f 100644
--- a/src/sage/schemes/elliptic_curves/ell_finite_field.py
+++ b/src/sage/schemes/elliptic_curves/ell_finite_field.py
@@ -785,11 +785,11 @@ class EllipticCurve_finite_field(EllipticCurve_field, HyperellipticCurve_finite_
sage: len(E.gens())
2
sage: E.cardinality()
- 867361737988403547207212930746733987710588
+ 867361737988403547206134229616487867594472
sage: E.gens()[0].order()
- 433680868994201773603606465373366993855294
+ 433680868994201773603067114808243933797236
sage: E.gens()[1].order()
- 433680868994201773603606465373366993855294
+ 433680868994201773603067114808243933797236
"""
G = self.__pari__().ellgroup(flag=1)
return tuple(self.point(list(pt)) for pt in G[2])
diff --git a/src/sage/schemes/elliptic_curves/ell_generic.py b/src/sage/schemes/elliptic_curves/ell_generic.py
index ac5b4a98b4..194501bc94 100644
--- a/src/sage/schemes/elliptic_curves/ell_generic.py
+++ b/src/sage/schemes/elliptic_curves/ell_generic.py
@@ -2934,15 +2934,7 @@ class EllipticCurve_generic(WithEqualityById, plane_curve.ProjectivePlaneCurve):
sage: K.<a> = QuadraticField(2)
sage: E = EllipticCurve([1,a])
sage: E.pari_curve()
- [Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(1, y^2 - 2),
- Mod(y, y^2 - 2), Mod(0, y^2 - 2), Mod(2, y^2 - 2), Mod(4*y, y^2 - 2),
- Mod(-1, y^2 - 2), Mod(-48, y^2 - 2), Mod(-864*y, y^2 - 2),
- Mod(-928, y^2 - 2), Mod(3456/29, y^2 - 2), Vecsmall([5]),
- [[y^2 - 2, [2, 0], 8, 1, [[1, -1.41421356237310;
- 1, 1.41421356237310], [1, -1.41421356237310; 1, 1.41421356237310],
- [1, -1; 1, 1], [2, 0; 0, 4], [4, 0; 0, 2], [2, 0; 0, 1],
- [2, [0, 2; 1, 0]], []], [-1.41421356237310, 1.41421356237310],
- [1, y], [1, 0; 0, 1], [1, 0, 0, 2; 0, 1, 1, 0]]], [0, 0, 0, 0, 0]]
+ [Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(0, y^2 - 2), Mod(1, y^2 - 2), Mod(y, y^2 - 2), Mod(0, y^2 - 2), Mod(2, y^2 - 2), Mod(4*y, y^2 - 2), Mod(-1, y^2 - 2), Mod(-48, y^2 - 2), Mod(-864*y, y^2 - 2), Mod(-928, y^2 - 2), Mod(3456/29, y^2 - 2), Vecsmall([5]), [[y^2 - 2, [2, 0], 8, 1, [[1, -1.41421356237310; 1, 1.41421356237310], [1, -1.41421356237310; 1, 1.41421356237310], [16, -23; 16, 23], [2, 0; 0, 4], [4, 0; 0, 2], [2, 0; 0, 1], [2, [0, 2; 1, 0]], [2]], [-1.41421356237310, 1.41421356237310], [1, y], [1, 0; 0, 1], [1, 0, 0, 2; 0, 1, 1, 0]]], [0, 0, 0, 0, 0]]
PARI no longer requires that the `j`-invariant has negative `p`-adic valuation::
diff --git a/src/sage/schemes/elliptic_curves/ell_number_field.py b/src/sage/schemes/elliptic_curves/ell_number_field.py
index dded480ba8..26f2d9c9d4 100644
--- a/src/sage/schemes/elliptic_curves/ell_number_field.py
+++ b/src/sage/schemes/elliptic_curves/ell_number_field.py
@@ -214,9 +214,9 @@ class EllipticCurve_number_field(EllipticCurve_field):
sage: E == loads(dumps(E))
True
sage: E.simon_two_descent()
- (2, 2, [(0 : 0 : 1), (1/8*a + 5/8 : -3/16*a - 7/16 : 1)])
+ (2, 2, [(0 : 0 : 1)])
sage: E.simon_two_descent(lim1=3, lim3=20, limtriv=5, maxprob=7, limbigprime=10)
- (2, 2, [(-1 : 0 : 1), (-1/8*a + 5/8 : -3/16*a - 9/16 : 1)])
+ (2, 2, [(-1 : 0 : 1), (5/32*a + 1/32 : -19/128*a + 41/128 : 1)])
::
@@ -244,22 +244,22 @@ class EllipticCurve_number_field(EllipticCurve_field):
C = Mod(y, y^2 + 7)
<BLANKLINE>
Computing L(S,2)
- L(S,2) = [Mod(Mod(-1/2*y + 1/2, y^2 + 7)*x^2 + Mod(-1/2*y - 1/2, y^2 + 7)*x + Mod(-y - 1, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(-x^2 + Mod(-1/2*y - 1/2, y^2 + 7)*x + 1, x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(-1, x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(x^2 + 2, x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(x + Mod(1/2*y + 3/2, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(x + Mod(1/2*y - 3/2, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))]
+ L(S,2) = [Mod(Mod(1/2*y - 1/2, y^2 + 7)*x^2 + Mod(1/2*y + 1/2, y^2 + 7)*x + Mod(y + 1, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(x^2 + Mod(1/2*y + 1/2, y^2 + 7)*x - 1, x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(-1, x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(x^2 + 2, x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(x + Mod(1/2*y + 3/2, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(x + Mod(1/2*y - 3/2, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))]
<BLANKLINE>
Computing the Selmer group
#LS2gen = 2
- LS2gen = [Mod(Mod(-1/2*y + 1/2, y^2 + 7)*x^2 + Mod(-1/2*y - 1/2, y^2 + 7)*x + Mod(-y - 1, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(x^2 + Mod(1/2*y + 1/2, y^2 + 7)*x - 1, x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))]
+ LS2gen = [Mod(x^2 + Mod(1/2*y + 1/2, y^2 + 7)*x - 1, x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7)), Mod(Mod(-1/2*y + 1/2, y^2 + 7)*x^2 + Mod(-1/2*y - 1/2, y^2 + 7)*x + Mod(-y - 1, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))]
Search for trivial points on the curve
Trivial points on the curve = [[Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)], [1, 1, 0], [Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7), 1]]
+ zc = Mod(Mod(1, y^2 + 7)*x^2 + Mod(1/2*y + 1/2, y^2 + 7)*x + Mod(-1, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))
+ comes from the trivial point [Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)]
zc = Mod(Mod(-1/2*y + 1/2, y^2 + 7)*x^2 + Mod(-1/2*y - 1/2, y^2 + 7)*x + Mod(-y - 1, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))
- Hilbert symbol (Mod(1, y^2 + 7),Mod(-2*y + 2, y^2 + 7)) =
+ Hilbert symbol (Mod(1, y^2 + 7),Mod(-2*y + 2, y^2 + 7)) =
sol of quadratic equation = [1, 1, 0]~
zc*z1^2 = Mod(4*x + Mod(-2*y + 6, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))
quartic: (-1)*Y^2 = x^4 + (3*y - 9)*x^2 + (-8*y + 16)*x + (9/2*y - 11/2)
reduced: Y^2 = -x^4 + (-3*y + 9)*x^2 + (-8*y + 16)*x + (-9/2*y + 11/2)
not ELS at [2, [0, 1]~, 1, 1, [1, -2; 1, 0]]
- zc = Mod(Mod(1, y^2 + 7)*x^2 + Mod(1/2*y + 1/2, y^2 + 7)*x + Mod(-1, y^2 + 7), x^3 + Mod(1, y^2 + 7)*x + Mod(y, y^2 + 7))
- comes from the trivial point [Mod(1/2*y + 3/2, y^2 + 7), Mod(-y - 2, y^2 + 7)]
m1 = 1
m2 = 1
#S(E/K)[2] = 2
@@ -298,8 +298,8 @@ class EllipticCurve_number_field(EllipticCurve_field):
sage: E.simon_two_descent() # long time (4s on sage.math, 2013)
(3,
3,
- [(0 : 0 : 1),
- (-1/2*zeta43_0^2 - 1/2*zeta43_0 + 7 : -3/2*zeta43_0^2 - 5/2*zeta43_0 + 18 : 1)...)
+ [(5/8*zeta43_0^2 + 17/8*zeta43_0 - 9/4 : -27/16*zeta43_0^2 - 103/16*zeta43_0 + 39/8 : 1),
+ (0 : 0 : 1)])
"""
verbose = int(verbose)
if known_points is None:
diff --git a/src/sage/schemes/elliptic_curves/ell_rational_field.py b/src/sage/schemes/elliptic_curves/ell_rational_field.py
index 2953e80cac..b9d34cd64a 100644
--- a/src/sage/schemes/elliptic_curves/ell_rational_field.py
+++ b/src/sage/schemes/elliptic_curves/ell_rational_field.py
@@ -5407,9 +5407,9 @@ class EllipticCurve_rational_field(EllipticCurve_number_field):
sage: E = EllipticCurve('37a1')
sage: E.eval_modular_form([1.5+I,2.0+I,2.5+I],100) # abs tol 1e-20
- [-0.0018743978548152085771342944989052703431,
- 0.0018604485340371083710285594393397945456,
- -0.0018743978548152085771342944989052703431]
+ [-0.00187439785481520858 - 6.91083670607514589e-22*I,
+ 0.00186044853403710837 + 3.71914507780688601e-22*I,
+ -0.00187439785481520858 - 6.39417173217386647e-23*I]
sage: E.eval_modular_form(2.1+I, 100) # abs tol 1e-16
[0.00150864362757267079 + 0.00109100341113449845*I]
diff --git a/src/sage/schemes/elliptic_curves/isogeny_small_degree.py b/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
index 7178da3685..ea0a7e88bc 100644
--- a/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
+++ b/src/sage/schemes/elliptic_curves/isogeny_small_degree.py
@@ -801,8 +801,8 @@ def isogenies_5_0(E, minimal_models=True):
sage: K.<a> = NumberField(x**6-320*x**3-320)
sage: E = EllipticCurve(K,[0,0,1,0,0])
sage: isogenies_5_0(E)
- [Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 over Number Field in a with defining polynomial x^6 - 320*x^3 - 320 to Elliptic Curve defined by y^2 + y = x^3 + (643/8*a^5-15779/48*a^4-32939/24*a^3-71989/2*a^2+214321/6*a-112115/3)*x + (2901961/96*a^5+4045805/48*a^4+12594215/18*a^3-30029635/6*a^2+15341626/3*a-38944312/9) over Number Field in a with defining polynomial x^6 - 320*x^3 - 320,
- Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 over Number Field in a with defining polynomial x^6 - 320*x^3 - 320 to Elliptic Curve defined by y^2 + y = x^3 + (-1109/8*a^5-53873/48*a^4-180281/24*a^3-14491/2*a^2+35899/6*a-43745/3)*x + (-17790679/96*a^5-60439571/48*a^4-77680504/9*a^3+1286245/6*a^2-4961854/3*a-73854632/9) over Number Field in a with defining polynomial x^6 - 320*x^3 - 320]
+ [Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 over Number Field in a with defining polynomial x^6 - 320*x^3 - 320 to Elliptic Curve defined by y^2 + y = x^3 + (241565/32*a^5-362149/48*a^4+180281/24*a^3-9693307/4*a^2+14524871/6*a-7254985/3)*x + (1660391123/192*a^5-829315373/96*a^4+77680504/9*a^3-66622345345/24*a^2+33276655441/12*a-24931615912/9) over Number Field in a with defining polynomial x^6 - 320*x^3 - 320,
+ Isogeny of degree 5 from Elliptic Curve defined by y^2 + y = x^3 over Number Field in a with defining polynomial x^6 - 320*x^3 - 320 to Elliptic Curve defined by y^2 + y = x^3 + (47519/32*a^5-72103/48*a^4+32939/24*a^3-1909753/4*a^2+2861549/6*a-1429675/3)*x + (-131678717/192*a^5+65520419/96*a^4-12594215/18*a^3+5280985135/24*a^2-2637787519/12*a+1976130088/9) over Number Field in a with defining polynomial x^6 - 320*x^3 - 320]
"""
F = E.base_field()
if E.j_invariant() != 0:
diff --git a/src/sage/schemes/elliptic_curves/period_lattice.py b/src/sage/schemes/elliptic_curves/period_lattice.py
index 42793dc1b3..6ae1dd593d 100644
--- a/src/sage/schemes/elliptic_curves/period_lattice.py
+++ b/src/sage/schemes/elliptic_curves/period_lattice.py
@@ -1626,7 +1626,7 @@ class PeriodLattice_ell(PeriodLattice):
sage: embs = K.embeddings(CC)
sage: Lambda = E.period_lattice(embs[0])
sage: Lambda.elliptic_logarithm(P+3*Q, 100)
- 4.7100131126199672766973600998
+ 4.3543876242043418255250464574
sage: R.<x> = QQ[]
sage: K.<a> = NumberField(x^2 + x + 5)
sage: E = EllipticCurve(K, [0,0,1,-3,-5])
diff --git a/src/sage/schemes/toric/chow_group.py b/src/sage/schemes/toric/chow_group.py
index 89e82467b0..78730f930a 100644
--- a/src/sage/schemes/toric/chow_group.py
+++ b/src/sage/schemes/toric/chow_group.py
@@ -62,7 +62,7 @@ EXAMPLES::
7
sage: a = sum( A.gen(i) * (i+1) for i in range(A.ngens()) ) # an element of A
sage: a # long time (2s on sage.math, 2011)
- ( 3 | 1 mod 7 | 0 mod 2, 1 mod 2, 4, 5, 6, 7, 8 | 9 )
+ ( 3 | 1 mod 7 | 1 mod 2, 0 mod 2, 4, 5, 6, 7, 8 | 9 )
The Chow group elements are printed as ``( a0 | a1 mod 7 | a2 mod 2,
a3 mod 2, a4, a5, a6, a7, a8 | a9 )``, which denotes the element of
@@ -93,13 +93,13 @@ Cones of toric varieties can determine their own Chow cycle::
sage: cone = X.fan(dim=2)[3]; cone
2-d cone of Rational polyhedral fan in 3-d lattice N
sage: A_cone = A(cone); A_cone
- ( 0 | 1 mod 7 | 0 mod 2, 0 mod 2, 0, 0, 0, 0, 0 | 0 )
+ ( 0 | 6 mod 7 | 0 mod 2, 0 mod 2, 0, 0, 0, 0, 0 | 0 )
sage: A_cone.degree()
1
sage: 2 * A_cone
- ( 0 | 2 mod 7 | 0 mod 2, 0 mod 2, 0, 0, 0, 0, 0 | 0 )
+ ( 0 | 5 mod 7 | 0 mod 2, 0 mod 2, 0, 0, 0, 0, 0 | 0 )
sage: A_cone + A.gen(0)
- ( 0 | 1 mod 7 | 0 mod 2, 1 mod 2, 0, 0, 0, 0, 0 | 0 )
+ ( 0 | 6 mod 7 | 1 mod 2, 0 mod 2, 0, 0, 0, 0, 0 | 0 )
Chow cycles can be of mixed degrees::
diff --git a/src/sage/schemes/toric/homset.py b/src/sage/schemes/toric/homset.py
index 4bff92bcb0..ff6211cabe 100644
--- a/src/sage/schemes/toric/homset.py
+++ b/src/sage/schemes/toric/homset.py
@@ -467,12 +467,27 @@ class SchemeHomset_points_toric_field(SchemeHomset_points_toric_base):
sage: point_set.cardinality()
21
sage: sorted(X.point_set().list())
- [[0 : 0 : 1], [0 : 1 : 0], [0 : 1 : 1], [0 : 1 : 3],
- [1 : 0 : 0], [1 : 0 : 1], [1 : 0 : 3], [1 : 1 : 0],
- [1 : 1 : 1], [1 : 1 : 2], [1 : 1 : 3], [1 : 1 : 4],
- [1 : 1 : 5], [1 : 1 : 6], [1 : 3 : 0], [1 : 3 : 1],
- [1 : 3 : 2], [1 : 3 : 3], [1 : 3 : 4], [1 : 3 : 5],
- [1 : 3 : 6]]
+ [[0 : 0 : 1],
+ [0 : 1 : 0],
+ [0 : 1 : 1],
+ [0 : 1 : 5],
+ [1 : 0 : 0],
+ [1 : 0 : 1],
+ [1 : 0 : 5],
+ [1 : 1 : 0],
+ [1 : 1 : 1],
+ [1 : 1 : 2],
+ [1 : 1 : 3],
+ [1 : 1 : 4],
+ [1 : 1 : 5],
+ [1 : 1 : 6],
+ [1 : 3 : 1],
+ [1 : 3 : 2],
+ [1 : 3 : 3],
+ [1 : 3 : 4],
+ [1 : 3 : 5],
+ [1 : 3 : 6],
+ [1 : 5 : 0]]
As for a non-compact example, the blow-up of the plane is the line
bundle $O_{\mathbf{P}^1}(-1)$. Its point set is the Cartesian
@@ -641,7 +656,7 @@ class SchemeHomset_points_subscheme_toric_field(SchemeHomset_points_toric_base):
sage: P2.<x,y,z> = toric_varieties.P2(base_ring=GF(5))
sage: cubic = P2.subscheme([x^3 + y^3 + z^3])
sage: list(cubic.point_set())
- [[0 : 1 : 4], [1 : 0 : 4], [1 : 4 : 0], [1 : 2 : 1], [1 : 1 : 2], [1 : 3 : 3]]
+ [[0 : 1 : 4], [1 : 0 : 4], [1 : 4 : 0], [1 : 1 : 2], [1 : 2 : 1], [1 : 3 : 3]]
sage: cubic.point_set().cardinality()
6
"""
@@ -661,7 +676,7 @@ class SchemeHomset_points_subscheme_toric_field(SchemeHomset_points_toric_base):
sage: P2.<x,y,z> = toric_varieties.P2(base_ring=GF(5))
sage: cubic = P2.subscheme([x^3 + y^3 + z^3])
sage: list(cubic.point_set())
- [[0 : 1 : 4], [1 : 0 : 4], [1 : 4 : 0], [1 : 2 : 1], [1 : 1 : 2], [1 : 3 : 3]]
+ [[0 : 1 : 4], [1 : 0 : 4], [1 : 4 : 0], [1 : 1 : 2], [1 : 2 : 1], [1 : 3 : 3]]
sage: cubic.point_set().cardinality()
6
"""
diff --git a/src/sage/schemes/toric/points.py b/src/sage/schemes/toric/points.py
index 31e7769ede..361a010d2b 100644
--- a/src/sage/schemes/toric/points.py
+++ b/src/sage/schemes/toric/points.py
@@ -537,7 +537,7 @@ class FiniteFieldPointEnumerator(NaiveFinitePointEnumerator):
sage: enum._Chow_group_torsion()
((1, 2, 4), (1, 4, 2))
sage: enum._Chow_group_torsion_generators()
- ((1, 2, 4),)
+ ((1, 4, 2),)
"""
if self.fan.is_smooth():
return tuple()
@@ -673,7 +673,7 @@ class FiniteFieldPointEnumerator(NaiveFinitePointEnumerator):
sage: list(cokernel)
[(0), (1)]
sage: [p.lift() for p in cokernel]
- [(0, 0), (0, 1)]
+ [(0, 0), (0, -1)]
"""
from sage.matrix.constructor import matrix, block_matrix, identity_matrix
from sage.rings.all import ZZ
@@ -955,9 +955,9 @@ class FiniteFieldSubschemePointEnumerator(NaiveSubschemePointEnumerator):
sage: ffe.homogeneous_coordinates([0], nonzero_coordinates, cokernel)
(1, 1, 0)
sage: ffe.homogeneous_coordinates([1], nonzero_coordinates, cokernel)
- (1, 3, 0)
+ (1, 5, 0)
sage: ffe.homogeneous_coordinates([2], nonzero_coordinates, cokernel)
- (1, 2, 0)
+ (1, 4, 0)
"""
z = [self.ambient.ring.zero()] * len(self.ambient.rays())
z_nonzero = self.ambient.exp(
@@ -986,7 +986,7 @@ class FiniteFieldSubschemePointEnumerator(NaiveSubschemePointEnumerator):
sage: point_set = X.point_set()
sage: ffe = point_set._enumerator()
sage: list(ffe) # indirect doctest
- [(1, 4, 3), (1, 1, 6), (1, 2, 5)]
+ [(1, 1, 6), (1, 2, 5), (1, 4, 3)]
"""
for cone, nonzero_coordinates, cokernel in self.ambient.cone_points_iter():
R = PolynomialRing(self.ambient.ring, cokernel.ngens(), 't')
@@ -1011,11 +1011,11 @@ class FiniteFieldSubschemePointEnumerator(NaiveSubschemePointEnumerator):
sage: Y = X.subscheme(u^3 + v^3 + w^3 + u*v*w)
sage: point_set = Y.point_set()
sage: list(point_set)
- [[0 : 1 : 3],
- [1 : 0 : 3],
- [1 : 3 : 0],
- [1 : 1 : 6],
+ [[0 : 1 : 5],
+ [1 : 0 : 5],
+ [1 : 5 : 0],
[1 : 1 : 4],
+ [1 : 1 : 6],
[1 : 3 : 2],
[1 : 3 : 5]]
sage: ffe = point_set._enumerator()
diff --git a/src/sage/structure/factorization.py b/src/sage/structure/factorization.py
index 1d32db0842..7636f1a9ba 100644
--- a/src/sage/structure/factorization.py
+++ b/src/sage/structure/factorization.py
@@ -133,17 +133,17 @@ Factorizations can involve fairly abstract mathematical objects::
sage: K.<a> = NumberField(x^2 + 3); K
Number Field in a with defining polynomial x^2 + 3
sage: f = K.factor(15); f
- (Fractional ideal (-a))^2 * (Fractional ideal (5))
+ (Fractional ideal (1/2*a + 3/2))^2 * (Fractional ideal (5))
sage: f.universe()
Monoid of ideals of Number Field in a with defining polynomial x^2 + 3
sage: f.unit()
Fractional ideal (1)
sage: g=K.factor(9); g
- (Fractional ideal (-a))^4
+ (Fractional ideal (1/2*a + 3/2))^4
sage: f.lcm(g)
- (Fractional ideal (-a))^4 * (Fractional ideal (5))
+ (Fractional ideal (1/2*a + 3/2))^4 * (Fractional ideal (5))
sage: f.gcd(g)
- (Fractional ideal (-a))^2
+ (Fractional ideal (1/2*a + 3/2))^2
sage: f.is_integral()
True
diff --git a/src/sage/tests/books/computational-mathematics-with-sagemath/linalg_doctest.py b/src/sage/tests/books/computational-mathematics-with-sagemath/linalg_doctest.py
index d67a33e7c4..7cba0ef6bb 100644
--- a/src/sage/tests/books/computational-mathematics-with-sagemath/linalg_doctest.py
+++ b/src/sage/tests/books/computational-mathematics-with-sagemath/linalg_doctest.py
@@ -232,13 +232,13 @@ Sage example in ./linalg.tex, line 1640::
sage: A = matrix(ZZ, 4, 5,\
....: [-1,-1,-1,-2,-2,-2,1,1,-1,2,2,2,2,2,-1,2,2,2,2,2])
sage: S,U,V = A.smith_form(); S,U,V
- (
- [ 0 -2 -1 -5 0]
- [1 0 0 0 0] [ 1 0 0 0] [ 1 0 1 -1 -1]
- [0 1 0 0 0] [ 0 0 1 0] [ 0 0 0 0 1]
- [0 0 3 0 0] [-2 1 0 0] [-1 2 0 5 0]
- [0 0 0 6 0], [ 0 0 -2 -1], [ 0 -1 0 -2 0]
- )
+ (
+ [ 0 -2 0 -5 0]
+ [1 0 0 0 0] [ 1 0 0 0] [ 1 0 0 -1 -1]
+ [0 1 0 0 0] [-2 1 1 0] [ 0 0 0 0 1]
+ [0 0 3 0 0] [-4 2 3 0] [-1 1 1 5 0]
+ [0 0 0 6 0], [ 4 -2 -2 -1], [ 0 0 -1 -2 0]
+ )
Sage example in ./linalg.tex, line 1674::
diff --git a/src/sage/tests/books/judson-abstract-algebra/galois-sage.py b/src/sage/tests/books/judson-abstract-algebra/galois-sage.py
index 6c25aa5dc5..8bdceb9424 100644
--- a/src/sage/tests/books/judson-abstract-algebra/galois-sage.py
+++ b/src/sage/tests/books/judson-abstract-algebra/galois-sage.py
@@ -385,69 +385,49 @@ r"""
sage: L.subfields()
[
- (Number Field in c0 with defining polynomial x,
- Ring morphism:
- From: Number Field in c0 with defining polynomial x
- To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: 0 |--> 0,
- None),
- (Number Field in c1 with defining polynomial x^2 + 112*x + 40000,
- Ring morphism:
- From: Number Field in c1 with defining polynomial x^2 + 112*x + 40000
- To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c1 |--> 4*c^4,
- None),
- (Number Field in c2 with defining polynomial x^2 + 512,
- Ring morphism:
- From: Number Field in c2 with defining polynomial x^2 + 512
- To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c2 |--> 1/25*c^6 + 78/25*c^2,
- None),
- (Number Field in c3 with defining polynomial x^2 - 288,
- Ring morphism:
- From: Number Field in c3 with defining polynomial x^2 - 288
- To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c3 |--> -1/25*c^6 + 22/25*c^2,
- None),
- (Number Field in c4 with defining polynomial x^4 + 112*x^2 + 40000,
- Ring morphism:
- From: Number Field in c4 with defining polynomial x^4 + 112*x^2 + 40000
- To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c4 |--> 2*c^2,
- None),
- (Number Field in c5 with defining polynomial x^4 + 648,
- Ring morphism:
- From: Number Field in c5 with defining polynomial x^4 + 648
- To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c5 |--> 1/80*c^5 + 79/40*c,
- None),
- (Number Field in c6 with defining polynomial x^4 + 8,
- Ring morphism:
- From: Number Field in c6 with defining polynomial x^4 + 8
+ (Number Field in c0 with defining polynomial x, Ring morphism:
+ From: Number Field in c0 with defining polynomial x
To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c6 |--> -1/80*c^5 + 1/40*c,
- None),
- (Number Field in c7 with defining polynomial x^4 - 512,
- Ring morphism:
- From: Number Field in c7 with defining polynomial x^4 - 512
- To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c7 |--> -1/60*c^5 + 41/30*c,
- None),
- (Number Field in c8 with defining polynomial x^4 - 32,
- Ring morphism:
- From: Number Field in c8 with defining polynomial x^4 - 32
- To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c8 |--> 1/60*c^5 + 19/30*c,
- None),
- (Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500,
- Ring morphism:
- From: Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500
- To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c9 |--> c,
- Ring morphism:
- From: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
- To: Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500
- Defn: c |--> c9)
+ Defn: 0 |--> 0, None),
+ (Number Field in c1 with defining polynomial x^2 + 112*x + 40000, Ring morphism:
+ From: Number Field in c1 with defining polynomial x^2 + 112*x + 40000
+ To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c1 |--> 4*c^4, None),
+ (Number Field in c2 with defining polynomial x^2 + 512, Ring morphism:
+ From: Number Field in c2 with defining polynomial x^2 + 512
+ To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c2 |--> 1/25*c^6 + 78/25*c^2, None),
+ (Number Field in c3 with defining polynomial x^2 - 288, Ring morphism:
+ From: Number Field in c3 with defining polynomial x^2 - 288
+ To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c3 |--> -1/25*c^6 + 22/25*c^2, None),
+ (Number Field in c4 with defining polynomial x^4 + 112*x^2 + 40000, Ring morphism:
+ From: Number Field in c4 with defining polynomial x^4 + 112*x^2 + 40000
+ To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c4 |--> 2*c^2, None),
+ (Number Field in c5 with defining polynomial x^4 + 8, Ring morphism:
+ From: Number Field in c5 with defining polynomial x^4 + 8
+ To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c5 |--> -1/80*c^5 + 1/40*c, None),
+ (Number Field in c6 with defining polynomial x^4 + 648, Ring morphism:
+ From: Number Field in c6 with defining polynomial x^4 + 648
+ To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c6 |--> 1/80*c^5 + 79/40*c, None),
+ (Number Field in c7 with defining polynomial x^4 - 512, Ring morphism:
+ From: Number Field in c7 with defining polynomial x^4 - 512
+ To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c7 |--> -1/60*c^5 + 41/30*c, None),
+ (Number Field in c8 with defining polynomial x^4 - 32, Ring morphism:
+ From: Number Field in c8 with defining polynomial x^4 - 32
+ To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c8 |--> 1/60*c^5 + 19/30*c, None),
+ (Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500, Ring morphism:
+ From: Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500
+ To: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c9 |--> c, Ring morphism:
+ From: Number Field in c with defining polynomial x^8 + 28*x^4 + 2500
+ To: Number Field in c9 with defining polynomial x^8 + 28*x^4 + 2500
+ Defn: c |--> c9)
]
~~~~~~~~~~~~~~~~~~~~~~ ::
diff --git a/src/sage/tests/parigp.py b/src/sage/tests/parigp.py
index c118b6eb37..f567ade058 100644
--- a/src/sage/tests/parigp.py
+++ b/src/sage/tests/parigp.py
@@ -2,15 +2,6 @@ r"""
This file is meant to catch errors in the PARI/GP package which are not
caught by any other tests.
-Check that :trac:`9876` has been fixed, this test comes from PARI's
-self-test :pari:`rnfkummer` but was modified such that the answer is
-canonical::
-
- sage: pari('addprimes([31438243, 238576291, 18775387483, 24217212463267, 1427657500359111961, 135564809928627323997297867381959])')
- [31438243, 238576291, 18775387483, 24217212463267, 1427657500359111961, 135564809928627323997297867381959]
- sage: pari('K = bnfinit(y^4-52*y^2+26,1); pol = rnfkummer(bnrinit(K,3,1),Mat(5)); L = rnfinit(K, pol); polredabs(polredbest(L.polabs))') # long time
- x^20 - 112*x^18 + 5108*x^16 - 123460*x^14 + 1724337*x^12 - 14266996*x^10 + 69192270*x^8 - 188583712*x^6 + 260329852*x^4 - 141461008*x^2 + 19860776
-
Check that :trac:`10195` (PARI bug 1153) has been fixed::
sage: print(gp.eval("mathnf([0,0,0,0,0,0,0,0,0,13;0,0,0,0,0,0,0,0,23,6;0,0,0,0,0,0,0,23,-4,-7;0,0,0,0,0,0,17,-3,5,-5;0,0,0,0,0,56,16,-16,-15,-17;0,0,0,0,57,24,-16,-25,2,-21;0,0,0,114,9,56,51,-52,25,-55;0,0,113,-31,-11,24,0,28,34,-16;0,50,3,2,16,-6,-2,7,-19,-21;118,43,51,23,37,-52,18,38,51,28],0)"))
|