summarylogtreecommitdiffstats
path: root/sagemath-singular-4.2.patch
blob: 132f6496ceace82e76c9247cdc93cc1b43f669d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
diff --git a/build/pkgs/singular/checksums.ini b/build/pkgs/singular/checksums.ini
index 55751d3429..ff4ab29cbe 100644
--- a/build/pkgs/singular/checksums.ini
+++ b/build/pkgs/singular/checksums.ini
@@ -1,4 +1,5 @@
 tarball=singular-VERSION.tar.gz
-sha1=5c6b6c3d2b5ebaca164967eec67e59ebb4e6142f
-md5=cb50d64ab1b2b49a0c3f519e5c87639e
-cksum=4294037094
+sha1=3f85ab3e099928af4f1a44693ad425e4861d1b21
+md5=cd8ee869421ca225b4c469a0ea74c5ee
+cksum=3689677991
+upstream_url=ftp://jim.mathematik.uni-kl.de/pub/Math/Singular/SOURCES/4-2-0/singular-VERSION.tar.gz
diff --git a/build/pkgs/singular/package-version.txt b/build/pkgs/singular/package-version.txt
index dc3219d462..78a1780baf 100644
--- a/build/pkgs/singular/package-version.txt
+++ b/build/pkgs/singular/package-version.txt
@@ -1 +1 @@
-4.1.1p2.p0
+4.2.0p1
diff --git a/build/pkgs/singular/patches/configure-no-ntl-header-check.patch b/build/pkgs/singular/patches/configure-no-ntl-header-check.patch
index 3109e57f4b..b4ec33fc05 100644
--- a/build/pkgs/singular/patches/configure-no-ntl-header-check.patch
+++ b/build/pkgs/singular/patches/configure-no-ntl-header-check.patch
@@ -49,30 +49,4 @@ index db6423d..c0a2260 100755
 +## fi
  done
  
- if test "x$ntl_found" = "xyes" ; then
-diff --git a/libpolys/configure b/libpolys/configure
-index 41b0928..9a4b9f5 100755
---- a/libpolys/configure
-+++ b/libpolys/configure
-@@ -20660,7 +20660,7 @@ fi
- 
- for NTL_HOME in ${NTL_HOME_PATH}
-  do
--if test -r "$NTL_HOME/include/NTL/ZZ.h"; then
-+## if test -r "$NTL_HOME/include/NTL/ZZ.h"; then
- 
- 	if test "x$NTL_HOME" != "x/usr"; then
- 		NTL_CPPFLAGS="-I${NTL_HOME}/include"
-@@ -20731,9 +20731,9 @@ else
- fi
- rm -f core conftest.err conftest.$ac_objext \
-     conftest$ac_exeext conftest.$ac_ext
--else
--	ntl_found="no"
--fi
-+## else
-+## 	ntl_found="no"
-+## fi
- done
- 
  if test "x$ntl_found" = "xyes" ; then
diff --git a/build/pkgs/singular/patches/fix-building-with-nodebug.patch b/build/pkgs/singular/patches/fix-building-with-nodebug.patch
deleted file mode 100644
index 46b8ab83ce..0000000000
--- a/build/pkgs/singular/patches/fix-building-with-nodebug.patch
+++ /dev/null
@@ -1,31 +0,0 @@
-From 80a9ffc773542e3329935e5377f6906628be16e6 Mon Sep 17 00:00:00 2001
-From: Yue Ren <yue.ren.kl@gmail.com>
-Date: Thu, 15 Nov 2018 10:48:24 -0500
-Subject: [PATCH] fix: building with NDEBUG=1, trac ticket 840
-
----
- Singular/dyn_modules/gfanlib/groebnerCone.h | 6 +++++-
- 1 file changed, 5 insertions(+), 1 deletion(-)
-
-diff --git a/Singular/dyn_modules/gfanlib/groebnerCone.h b/Singular/dyn_modules/gfanlib/groebnerCone.h
-index cb067250a0..8a212a7b7f 100644
---- a/Singular/dyn_modules/gfanlib/groebnerCone.h
-+++ b/Singular/dyn_modules/gfanlib/groebnerCone.h
-@@ -99,12 +99,16 @@ class groebnerCone
-    */
-   groebnerCones tropicalNeighbours() const;
- 
-+  /**
-+   * Return 1 if w points is in the dual of the polyhedral cone, 0 otherwise
-+   */
-+  bool pointsOutwards(const gfan::ZVector w) const;
-+
-   /**
-    * Debug tools.
-    */
-   #ifndef NDEBUG
-   bool checkFlipConeInput(const gfan::ZVector interiorPoint, const gfan::ZVector facetNormal) const;
--  bool pointsOutwards(const gfan::ZVector) const;
-   #endif
- };
- 
diff --git a/build/pkgs/singular/patches/singular-ntl-error-handler.patch b/build/pkgs/singular/patches/singular-ntl-error-handler.patch
deleted file mode 100644
index 3d49529323..0000000000
--- a/build/pkgs/singular/patches/singular-ntl-error-handler.patch
+++ /dev/null
@@ -1,75 +0,0 @@
-Move NTL error handler out of libsingular, otherwise it takes over Sage's error handler and makes it quit on NTL errors.
-See https://www.singular.uni-kl.de/forum/viewtopic.php?f=10&t=2769 and https://trac.sagemath.org/ticket/24735#comment:29
-Rebased from upstream commit https://github.com/Singular/Sources/commit/502cf86d0bb2a96715be6764774b64a69c1ca34c
-
-From 502cf86d0bb2a96715be6764774b64a69c1ca34c Mon Sep 17 00:00:00 2001
-From: Hans Schoenemann <hannes@mathematik.uni-kl.de>
-Date: Wed, 25 Jul 2018 11:03:32 +0200
-Subject: [PATCH] move error handler for factory,NTL to the non-libSingular part
-
-(see forum: "NTL error handling", for SAGE)
-
-diff --git a/Singular/cntrlc.cc b/Singular/cntrlc.cc
-index 622495490c..874a5deb79 100644
---- a/Singular/cntrlc.cc
-+++ b/Singular/cntrlc.cc
-@@ -20,6 +20,14 @@
- #include "Singular/links/silink.h"
- #include "Singular/links/ssiLink.h"
- 
-+#ifdef HAVE_NTL
-+#include <NTL/version.h>
-+#include <NTL/tools.h>
-+#ifdef NTL_CLIENT
-+NTL_CLIENT
-+#endif
-+#endif
-+
- /* undef, if you don't want GDB to come up on error */
- 
- #define CALL_GDB
-@@ -549,11 +557,20 @@ static void stack_trace (char *const*args)
- 
- #  endif /* !__OPTIMIZE__ */
- 
--/*2
--* init signal handlers
--*/
-+/// init signal handlers and error handling for libraries: NTL, factory
- void init_signals()
- {
-+// NTL error handling (>= 9.3.0) ----------------------------------------
-+#ifdef HAVE_NTL
-+#if (((NTL_MAJOR_VERSION==9)&&(NTL_MINOR_VERSION>=3))||(NTL_MAJOR_VERSION>=10))
-+  ErrorMsgCallback=WerrorS;
-+  ErrorCallback=HALT;
-+#endif
-+#endif
-+// factory error handling: -----------------------------------------------
-+  factoryError=WerrorS;
-+
-+// signal handler -------------------------------------------------------
-   #ifdef SIGSEGV
-   si_set_signal(SIGSEGV,(si_hdl_typ)sigsegv_handler);
-   #endif
-diff --git a/Singular/misc_ip.cc b/Singular/misc_ip.cc
-index 49eddaae6f..3d5775edd7 100644
---- a/Singular/misc_ip.cc
-+++ b/Singular/misc_ip.cc
-@@ -1316,16 +1316,6 @@ static BOOLEAN iiCrossProd(leftv res, leftv args)
-   On(SW_USE_EZGCD_P);
-   On(SW_USE_QGCD);
-   Off(SW_USE_NTL_SORT); // may be changed by an command line option
--  factoryError=WerrorS;
--
--// NTL error handling (>= 9.3.0)
--#ifdef HAVE_NTL
--#if (((NTL_MAJOR_VERSION==9)&&(NTL_MINOR_VERSION>=3))||(NTL_MAJOR_VERSION>=10))
--  ErrorMsgCallback=WerrorS;
--  ErrorCallback=HALT;
--#endif
--#endif
--
- // memory initialization: -----------------------------------------------
-     om_Opts.OutOfMemoryFunc = omSingOutOfMemoryFunc;
- #ifndef OM_NDEBUG
diff --git a/src/doc/en/constructions/algebraic_geometry.rst b/src/doc/en/constructions/algebraic_geometry.rst
index 3933bf0839..76b173d80a 100644
--- a/src/doc/en/constructions/algebraic_geometry.rst
+++ b/src/doc/en/constructions/algebraic_geometry.rst
@@ -139,7 +139,7 @@ Other methods
 
        sage: singular.lib("brnoeth.lib")
        sage: s = singular.ring(2,'(x,y)','lp')
-       sage: I = singular.ideal('[x^4+x, y^4+y]')
+       sage: I = singular.ideal('x^4+x', 'y^4+y')
        sage: L = singular.closed_points(I)
        sage: # Here you have all the points :
        sage: L       # random
@@ -329,7 +329,7 @@ Singular itself to help an understanding of how the wrapper works.
        sage: X = Curve(f); pts = X.rational_points()
        sage: D = X.divisor([ (3, pts[0]), (-1,pts[1]), (10, pts[5]) ])
        sage: X.riemann_roch_basis(D)
-       [(-x - 2*y)/(-2*x - 2*y), (-x + z)/(x + y)]
+       [(-2*x + y)/(x + y), (-x + z)/(x + y)]
 
 -  Using Singular's ``BrillNoether`` command (for details see the section
    Brill-Noether in the Singular online documentation
diff --git a/src/sage/algebras/free_algebra.py b/src/sage/algebras/free_algebra.py
index 9e846158d1..b3dc47ba3f 100644
--- a/src/sage/algebras/free_algebra.py
+++ b/src/sage/algebras/free_algebra.py
@@ -39,7 +39,15 @@ two-sided ideals, and thus provide ideal containment tests::
     Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
     sage: I = F*[x*y+y*z,x^2+x*y-y*x-y^2]*F
     sage: I.groebner_basis(degbound=4)
-    Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
+    Twosided Ideal (x*y + y*z,
+        x*x - y*x - y*y - y*z,
+        y*y*y - y*y*z + y*z*y - y*z*z,
+        y*y*x + y*y*z + y*z*x + y*z*z,
+        y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z,
+        y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z,
+        y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z,
+        y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z) of Free Associative Unital
+        Algebra on 3 generators (x, y, z) over Rational Field
     sage: y*z*y*y*z*z + 2*y*z*y*z*z*x + y*z*y*z*z*z - y*z*z*y*z*x + y*z*z*z*z*x in I
     True
 
@@ -232,7 +240,7 @@ class FreeAlgebraFactory(UniqueFactory):
         a*b^2*c^3
     """
     def create_key(self, base_ring, arg1=None, arg2=None,
-            sparse=None, order='degrevlex',
+            sparse=None, order=None,
             names=None, name=None,
             implementation=None, degrees=None):
         """
@@ -263,6 +271,8 @@ class FreeAlgebraFactory(UniqueFactory):
             return tuple(degrees),base_ring
         # test if we can use libSingular/letterplace
         if implementation == "letterplace":
+            if order is None:
+                order = 'degrevlex' if degrees is None else 'deglex'
             args = [arg for arg in (arg1, arg2) if arg is not None]
             kwds = dict(sparse=sparse, order=order, implementation="singular")
             if name is not None:
@@ -273,7 +283,7 @@ class FreeAlgebraFactory(UniqueFactory):
             if degrees is None:
                 return (PolRing,)
             from sage.all import TermOrder
-            T = PolRing.term_order() + TermOrder('lex',1)
+            T = TermOrder(PolRing.term_order(), PolRing.ngens() + 1)
             varnames = list(PolRing.variable_names())
             newname = 'x'
             while newname in varnames:
diff --git a/src/sage/algebras/letterplace/free_algebra_element_letterplace.pyx b/src/sage/algebras/letterplace/free_algebra_element_letterplace.pyx
index e7fed21ada..e9c1c9d908 100644
--- a/src/sage/algebras/letterplace/free_algebra_element_letterplace.pyx
+++ b/src/sage/algebras/letterplace/free_algebra_element_letterplace.pyx
@@ -17,6 +17,7 @@ AUTHOR:
 #                  https://www.gnu.org/licenses/
 # ****************************************************************************
 
+from sage.groups.perm_gps.all import CyclicPermutationGroup
 from sage.libs.singular.function import lib, singular_function
 from sage.misc.repr import repr_lincomb
 from sage.rings.polynomial.multi_polynomial_ideal import MPolynomialIdeal
@@ -25,7 +26,6 @@ from cpython.object cimport PyObject_RichCompare
 # Define some singular functions
 lib("freegb.lib")
 poly_reduce = singular_function("NF")
-singular_system=singular_function("system")
 
 #####################
 # Free algebra elements
@@ -445,9 +445,10 @@ cdef class FreeAlgebraElement_letterplace(AlgebraElement):
         cdef int i
         if P.monomial_divides(s_poly,p_poly):
             return True
+        realngens = A._commutative_ring.ngens()
+        CG = CyclicPermutationGroup(P.ngens())
         for i from 0 <= i < p_d-s_d:
-            s_poly = singular_system("stest",s_poly,1,
-                                     A._degbound,A.__ngens,ring=P)
+            s_poly = s_poly * CG[realngens]
             if P.monomial_divides(s_poly,p_poly):
                 return True
         return False
@@ -601,7 +602,9 @@ cdef class FreeAlgebraElement_letterplace(AlgebraElement):
         # we must put the polynomials into the same ring
         left._poly = A._current_ring(left._poly)
         right._poly = A._current_ring(right._poly)
-        rshift = singular_system("stest",right._poly,left._poly.degree(),A._degbound,A.__ngens, ring=A._current_ring)
+        realngens = A._commutative_ring.ngens()
+        CG = CyclicPermutationGroup(A._current_ring.ngens())
+        rshift = right._poly * CG[left._poly.degree() * realngens]
         return FreeAlgebraElement_letterplace(A,left._poly*rshift, check=False)
 
     def __pow__(FreeAlgebraElement_letterplace self, int n, k):
@@ -627,10 +630,11 @@ cdef class FreeAlgebraElement_letterplace(AlgebraElement):
         self._poly = A._current_ring(self._poly)
         cdef int d = self._poly.degree()
         q = p = self._poly
+        realngens = A._commutative_ring.ngens()
         cdef int i
+        CG = CyclicPermutationGroup(A._current_ring.ngens())
         for i from 0<i<n:
-            q = singular_system("stest",q,d,A._degbound,A.__ngens,
-                                     ring=A._current_ring)
+            q = q * CG[d * realngens]
             p *= q
         return FreeAlgebraElement_letterplace(A, p, check=False)
 
diff --git a/src/sage/algebras/letterplace/free_algebra_letterplace.pxd b/src/sage/algebras/letterplace/free_algebra_letterplace.pxd
index 7e5f2bbe97..d1d162c3b4 100644
--- a/src/sage/algebras/letterplace/free_algebra_letterplace.pxd
+++ b/src/sage/algebras/letterplace/free_algebra_letterplace.pxd
@@ -13,8 +13,15 @@ from sage.rings.ring cimport Algebra
 from sage.structure.element cimport AlgebraElement, ModuleElement, RingElement, Element
 from sage.rings.polynomial.multi_polynomial_libsingular cimport MPolynomialRing_libsingular, MPolynomial_libsingular
 from sage.algebras.letterplace.free_algebra_element_letterplace cimport FreeAlgebraElement_letterplace
+from sage.libs.singular.decl cimport ring
 
 
+cdef class FreeAlgebra_letterplace_libsingular():
+    cdef ring* _lp_ring
+    cdef MPolynomialRing_libsingular _commutative_ring
+    cdef MPolynomialRing_libsingular _lp_ring_internal
+    cdef object __ngens
+
 cdef class FreeAlgebra_letterplace(Algebra):
     cdef MPolynomialRing_libsingular _commutative_ring
     cdef MPolynomialRing_libsingular _current_ring
diff --git a/src/sage/algebras/letterplace/free_algebra_letterplace.pyx b/src/sage/algebras/letterplace/free_algebra_letterplace.pyx
index 39cfa4dfed..b520c4cab8 100644
--- a/src/sage/algebras/letterplace/free_algebra_letterplace.pyx
+++ b/src/sage/algebras/letterplace/free_algebra_letterplace.pyx
@@ -37,7 +37,15 @@ The preceding containment test is based on the computation of Groebner
 bases with degree bound::
 
     sage: I.groebner_basis(degbound=4)
-    Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
+    Twosided Ideal (x*y + y*z,
+        x*x - y*x - y*y - y*z,
+        y*y*y - y*y*z + y*z*y - y*z*z,
+        y*y*x + y*y*z + y*z*x + y*z*z,
+        y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z,
+        y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z,
+        y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z,
+        y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z) of Free Associative Unital
+        Algebra on 3 generators (x, y, z) over Rational Field
 
 When reducing an element by `I`, the original generators are chosen::
 
@@ -67,7 +75,13 @@ different normal form::
     Lexicographic term order
     sage: J = L*[a*b+b*c,a^2+a*b-b*c-c^2]*L
     sage: J.groebner_basis(4)
-    Twosided Ideal (2*b*c*b - b*c*c + c*c*b, a*c*c - 2*b*c*a - 2*b*c*c - c*c*a, a*b + b*c, a*a - 2*b*c - c*c) of Free Associative Unital Algebra on 3 generators (a, b, c) over Rational Field
+    Twosided Ideal (2*b*c*b - b*c*c + c*c*b,
+        a*b + b*c,
+        -a*c*c + 2*b*c*a + 2*b*c*c + c*c*a,
+        a*c*c*b - 2*b*c*c*b + b*c*c*c,
+        a*a - 2*b*c - c*c,
+        a*c*c*a - 2*b*c*c*a - 4*b*c*c*c - c*c*c*c) of Free Associative Unital
+        Algebra on 3 generators (a, b, c) over Rational Field
     sage: (b*c*b*b).normal_form(J)
     1/2*b*c*c*b - 1/2*c*c*b*b
 
@@ -105,15 +119,16 @@ TESTS::
 from sage.misc.misc_c import prod
 from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
 from sage.libs.singular.function import lib, singular_function
-from sage.rings.polynomial.term_order import TermOrder
+from sage.libs.singular.function cimport RingWrap
+from sage.libs.singular.ring cimport singular_ring_delete, singular_ring_reference
 from sage.categories.algebras import Algebras
 from sage.rings.noncommutative_ideals import IdealMonoid_nc
+from sage.rings.polynomial.plural cimport new_CRing
 
 #####################
 # Define some singular functions
 lib("freegb.lib")
-poly_reduce = singular_function("NF")
-singular_system=singular_function("system")
+freeAlgebra = singular_function("freeAlgebra")
 
 # unfortunately we cannot set Singular attributes for MPolynomialRing_libsingular
 # Hence, we must constantly work around Letterplace's sanity checks,
@@ -242,7 +257,7 @@ cdef class FreeAlgebra_letterplace(Algebra):
             sage: F.<a,b,c> = FreeAlgebra(K, implementation='letterplace')
             sage: TestSuite(F).run()
         """
-        if not isinstance(R,MPolynomialRing_libsingular):
+        if not isinstance(R, MPolynomialRing_libsingular):
             raise TypeError("A letterplace algebra must be provided by a polynomial ring of type %s" % MPolynomialRing_libsingular)
         self.__ngens = R.ngens()
         if degrees is None:
@@ -260,7 +275,9 @@ cdef class FreeAlgebra_letterplace(Algebra):
         if degrees is None:
             self._degrees = tuple([int(1)]*self.__ngens)
         else:
-            if (not isinstance(degrees,(tuple,list))) or len(degrees)!=self.__ngens-1 or any(i <= 0 for i in degrees):
+            if (not isinstance(degrees, (tuple, list))) \
+                    or len(degrees) != self.__ngens - self._nb_slackvars \
+                    or any(i <= 0 for i in degrees):
                 raise TypeError("The generator degrees must be given by a list or tuple of %d positive integers" % (self.__ngens-1))
             self._degrees = tuple([int(i) for i in degrees])
             self.set_degbound(max(self._degrees))
@@ -662,7 +679,7 @@ cdef class FreeAlgebra_letterplace(Algebra):
         Sage, since it does the reductions in a different order
         compared to Singular. Therefore, we call the original Singular
         reduction method, and prevent a warning message by asserting
-        that `G` is a Groebner basis.
+        that `G` is a Groebner basis. ::
 
             sage: from sage.libs.singular.function import singular_function
             sage: poly_reduce = singular_function("NF")
@@ -678,8 +695,10 @@ cdef class FreeAlgebra_letterplace(Algebra):
         ngens = self.__ngens
         degbound = self._degbound
         cdef list G = [C(x._poly) for x in g]
+        from sage.groups.perm_gps.all import CyclicPermutationGroup
+        CG = CyclicPermutationGroup(C.ngens())
         for y in G:
-            out.extend([y]+[singular_system("stest",y,n+1,degbound,ngens,ring=C) for n in xrange(d-y.degree())])
+            out.extend([y]+[y * CG[ngens*(n+1)] for n in xrange(d-y.degree())])
         return C.ideal(out)
 
     ###########################
@@ -875,3 +894,28 @@ cdef class FreeAlgebra_letterplace(Algebra):
             PNames[P.ngens(): len(PNames): P.ngens()+1] = list(Names[self.ngens(): len(Names): self.ngens()+1])[:P.degbound()]
             x = Ppoly.hom([Gens[Names.index(asdf)] for asdf in PNames])(x.letterplace_polynomial())
         return FreeAlgebraElement_letterplace(self,self._current_ring(x))
+
+cdef class FreeAlgebra_letterplace_libsingular():
+    """
+    Internally used wrapper around a Singular Letterplace polynomial ring.
+    """
+
+    def __cinit__(self, MPolynomialRing_libsingular commutative_ring,
+                  int degbound):
+        cdef RingWrap rw = freeAlgebra(commutative_ring, degbound)
+        self._lp_ring = singular_ring_reference(rw._ring)
+        # `_lp_ring` viewed as `MPolynomialRing_libsingular` with additional
+        # letterplace attributes set (for internal use only)
+        self._lp_ring_internal = new_CRing(rw, commutative_ring.base_ring())
+        self._commutative_ring = commutative_ring
+
+    def __init__(self, commutative_ring, degbound):
+        self.__ngens = commutative_ring.ngens() * degbound
+
+    def __dealloc__(self):
+        r"""
+        Carefully deallocate the ring, without changing ``currRing``
+        (since this method can be at unpredictable times due to garbage
+        collection).
+        """
+        singular_ring_delete(self._lp_ring)
diff --git a/src/sage/algebras/letterplace/letterplace_ideal.pyx b/src/sage/algebras/letterplace/letterplace_ideal.pyx
index f1430ee77c..c16803280b 100644
--- a/src/sage/algebras/letterplace/letterplace_ideal.pyx
+++ b/src/sage/algebras/letterplace/letterplace_ideal.pyx
@@ -18,7 +18,11 @@ One can compute Groebner bases out to a finite degree, can compute normal
 forms and can test containment in the ideal::
 
     sage: I.groebner_basis(degbound=3)
-    Twosided Ideal (y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
+    Twosided Ideal (x*y + y*z,
+        x*x - y*x - y*y - y*z,
+        y*y*y - y*y*z + y*z*y - y*z*z,
+        y*y*x + y*y*z + y*z*x + y*z*z) of Free Associative Unital Algebra
+        on 3 generators (x, y, z) over Rational Field
     sage: (x*y*z*y*x).normal_form(I)
     y*z*z*y*z + y*z*z*z*x + y*z*z*z*z
     sage: x*y*z*y*x - (x*y*z*y*x).normal_form(I) in I
@@ -42,14 +46,14 @@ AUTHOR:
 
 from sage.rings.noncommutative_ideals import Ideal_nc
 from sage.libs.singular.function import lib, singular_function
-from sage.algebras.letterplace.free_algebra_letterplace cimport FreeAlgebra_letterplace
+from sage.algebras.letterplace.free_algebra_letterplace cimport FreeAlgebra_letterplace, FreeAlgebra_letterplace_libsingular
 from sage.algebras.letterplace.free_algebra_element_letterplace cimport FreeAlgebraElement_letterplace
 from sage.rings.infinity import Infinity
 
 #####################
 # Define some singular functions
 lib("freegb.lib")
-singular_system=singular_function("system")
+singular_twostd=singular_function("twostd")
 poly_reduce=singular_function("NF")
 
 class LetterplaceIdeal(Ideal_nc):
@@ -69,14 +73,22 @@ class LetterplaceIdeal(Ideal_nc):
         sage: I.groebner_basis(2)
         Twosided Ideal (x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
         sage: I.groebner_basis(4)
-        Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
+        Twosided Ideal (x*y + y*z,
+            x*x - y*x - y*y - y*z,
+            y*y*y - y*y*z + y*z*y - y*z*z,
+            y*y*x + y*y*z + y*z*x + y*z*z,
+            y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z,
+            y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z,
+            y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z,
+            y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z) of Free Associative Unital
+            Algebra on 3 generators (x, y, z) over Rational Field
 
     Groebner bases are cached. If one has computed a Groebner basis
     out to a high degree then it will also be returned if a Groebner
     basis with a lower degree bound is requested::
 
-        sage: I.groebner_basis(2)
-        Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
+        sage: I.groebner_basis(2) is I.groebner_basis(4)
+        True
 
     Of course, the normal form of any element has to satisfy the following::
 
@@ -116,8 +128,11 @@ class LetterplaceIdeal(Ideal_nc):
         sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace',degrees=[1,2,3])
         sage: I = F*[x*y+z-y*x,x*y*z-x^6+y^3]*F
         sage: I.groebner_basis(Infinity)
-        Twosided Ideal (x*z*z - y*x*x*z - y*x*y*y + y*x*z*x + y*y*y*x + z*x*z + z*y*y - z*z*x,
-        x*y - y*x + z,
+        Twosided Ideal (x*y - y*x + z,
+        x*x*x*x*x*x - y*x*z - y*y*y + z*z,
+        x*z*z - y*x*x*z + y*x*z*x + y*y*z + y*z*y + z*x*z + z*y*y - z*z*x,
+        x*x*x*x*x*z + x*x*x*x*z*x + x*x*x*z*x*x + x*x*z*x*x*x + x*z*x*x*x*x +
+        y*x*z*y - y*y*x*z + y*z*z + z*x*x*x*x*x - z*z*y,
         x*x*x*x*z*y*y + x*x*x*z*y*y*x - x*x*x*z*y*z - x*x*z*y*x*z + x*x*z*y*y*x*x +
         x*x*z*y*y*y - x*x*z*y*z*x - x*z*y*x*x*z - x*z*y*x*z*x +
         x*z*y*y*x*x*x + 2*x*z*y*y*y*x - 2*x*z*y*y*z - x*z*y*z*x*x -
@@ -135,10 +150,7 @@ class LetterplaceIdeal(Ideal_nc):
         z*y*y*y*y - 3*z*y*y*z*x - z*y*z*x*x*x - 2*z*y*z*y*x +
         2*z*y*z*z - z*z*x*x*x*x*x + 4*z*z*x*x*z + 4*z*z*x*z*x -
         4*z*z*y*x*x*x - 3*z*z*y*y*x + 4*z*z*y*z + 4*z*z*z*x*x +
-        2*z*z*z*y,
-        x*x*x*x*x*z + x*x*x*x*z*x + x*x*x*z*x*x + x*x*z*x*x*x + x*z*x*x*x*x +
-        y*x*z*y - y*y*x*z + y*z*z + z*x*x*x*x*x - z*z*y,
-        x*x*x*x*x*x - y*x*z - y*y*y + z*z)
+        2*z*z*z*y)
         of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
 
     Again, we can compute normal forms::
@@ -226,7 +238,15 @@ class LetterplaceIdeal(Ideal_nc):
             sage: I.groebner_basis()   # not tested
             Twosided Ideal (y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
             sage: I.groebner_basis(4)
-            Twosided Ideal (y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z, y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z, y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z, y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z, y*y*y - y*y*z + y*z*y - y*z*z, y*y*x + y*y*z + y*z*x + y*z*z, x*y + y*z, x*x - y*x - y*y - y*z) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
+            Twosided Ideal (x*y + y*z,
+                x*x - y*x - y*y - y*z,
+                y*y*y - y*y*z + y*z*y - y*z*z,
+                y*y*x + y*y*z + y*z*x + y*z*z,
+                y*y*z*y - y*y*z*z + y*z*z*y - y*z*z*z,
+                y*z*y*y - y*z*y*z + y*z*z*y - y*z*z*z,
+                y*y*z*x + y*y*z*z + y*z*z*x + y*z*z*z,
+                y*z*y*x + y*z*y*z + y*z*z*x + y*z*z*z) of Free Associative
+                Unital Algebra on 3 generators (x, y, z) over Rational Field
             sage: I.groebner_basis(2) is I.groebner_basis(4)
             True
             sage: G = I.groebner_basis(4)
@@ -238,7 +258,14 @@ class LetterplaceIdeal(Ideal_nc):
 
             sage: I = F*[x*y-y*x,x*z-z*x,y*z-z*y,x^2*y-z^3,x*y^2+z*x^2]*F
             sage: I.groebner_basis(Infinity)
-            Twosided Ideal (z*z*z*y*y + z*z*z*z*x, z*x*x*x + z*z*z*y, y*z - z*y, y*y*x + z*x*x, y*x*x - z*z*z, x*z - z*x, x*y - y*x) of Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
+            Twosided Ideal (-y*z + z*y,
+                -x*z + z*x,
+                -x*y + y*x,
+                x*x*z + x*y*y,
+                x*x*y - z*z*z,
+                x*x*x*z + y*z*z*z,
+                x*z*z*z*z + y*y*z*z*z) of Free Associative Unital Algebra
+                on 3 generators (x, y, z) over Rational Field
 
         Since the commutators of the generators are contained in the ideal,
         we can verify the above result by a computation in a polynomial ring
@@ -275,9 +302,32 @@ class LetterplaceIdeal(Ideal_nc):
         libsingular_options['redSB'] = True
         A.set_degbound(degbound)
         P = A._current_ring
-        out = [FreeAlgebraElement_letterplace(A,X,check=False) for X in
-               singular_system("freegb",P.ideal([x._poly for x in self.__GB.gens()]),
-                               degbound,A.__ngens, ring = P)]
+
+        # note that degbound might be smaller than A._degbound due to caching,
+        # but degbound must be large enough to map all generators to the
+        # letterplace ring L
+        if degbound < A._degbound:
+            max_deg = max([x._poly.degree() for x in self.__GB.gens()])
+            if degbound < max_deg:
+                degbound = max_deg
+
+        # The following is a workaround for calling Singular's new Letterplace
+        # API (see :trac:`25993`). We construct a temporary polynomial ring L
+        # with letterplace attributes set as required by the API. As L has
+        # duplicate variable names, we need to handle this ring carefully; in
+        # particular, we cannot coerce to and from L, so we use homomorphisms
+        # for the conversion.
+
+        cdef FreeAlgebra_letterplace_libsingular lp_ring = \
+            FreeAlgebra_letterplace_libsingular(A._commutative_ring, degbound)
+        L = lp_ring._lp_ring_internal
+        to_L = P.hom(L.gens(), L, check=False)
+        from_L = L.hom(P.gens(), P, check=False)
+        I = L.ideal([to_L(x._poly) for x in self.__GB.gens()])
+        gb = singular_twostd(I)
+        out = [FreeAlgebraElement_letterplace(A, from_L(X), check=False)
+               for X in gb]
+
         libsingular_options['redTail'] = bck[0]
         libsingular_options['redSB'] = bck[1]
         self.__GB = A.ideal(out,side='twosided',coerce=False)
diff --git a/src/sage/combinat/root_system/hecke_algebra_representation.py b/src/sage/combinat/root_system/hecke_algebra_representation.py
index 51f4113706..ba42ed1524 100644
--- a/src/sage/combinat/root_system/hecke_algebra_representation.py
+++ b/src/sage/combinat/root_system/hecke_algebra_representation.py
@@ -746,7 +746,7 @@ class HeckeAlgebraRepresentation(WithEqualityById, SageObject):
              -2121 + 212,
              (q2/(q1-q2))*2121 + (q2/(-q1+q2))*121 + (q2/(-q1+q2))*212 - 12 + ((-q2)/(-q1+q2))*21 + 2,
              ((-q2^2)/(-q1^2+q1*q2-q2^2))*2121 - 121 + (q2^2/(-q1^2+q1*q2-q2^2))*212 + 21,
-             ((q1^2+q2^2)/(-q1^2+q1*q2-q2^2))*2121 + ((-q1^2-q2^2)/(-q1^2+q1*q2-q2^2))*121 + ((-q2^2)/(-q1^2+q1*q2-q2^2))*212 + (q2^2/(-q1^2+q1*q2-q2^2))*12 - 21 + 1,
+             ((-q1^2-q2^2)/(q1^2-q1*q2+q2^2))*2121 + ((-q1^2-q2^2)/(-q1^2+q1*q2-q2^2))*121 + ((-q2^2)/(-q1^2+q1*q2-q2^2))*212 + (q2^2/(-q1^2+q1*q2-q2^2))*12 - 21 + 1,
              2121,
              (q2/(-q1+q2))*2121 + ((-q2)/(-q1+q2))*121 - 212 + 12,
              -2121 + 121]
diff --git a/src/sage/combinat/root_system/non_symmetric_macdonald_polynomials.py b/src/sage/combinat/root_system/non_symmetric_macdonald_polynomials.py
index 35377724c9..ee8ddec7dd 100644
--- a/src/sage/combinat/root_system/non_symmetric_macdonald_polynomials.py
+++ b/src/sage/combinat/root_system/non_symmetric_macdonald_polynomials.py
@@ -555,8 +555,7 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
         B[(1, 0, 0)]
 
         sage: E[-omega[1]]
-        B[(-1, 0, 0)] + ((-q*q1^6-q*q1^5*q2-q1*q2^5-q2^6)/(-q^3*q1^6-q^2*q1^5*q2-q*q1*q2^5-q2^6))*B[(1, 0, 0)] + ((-q1-q2)/(-q*q1-q2))*B[(0, -1, 0)]
-        + ((q1+q2)/(q*q1+q2))*B[(0, 1, 0)] + ((-q1-q2)/(-q*q1-q2))*B[(0, 0, -1)] + ((-q1-q2)/(-q*q1-q2))*B[(0, 0, 1)]
+        B[(-1, 0, 0)] + ((q*q1^6+q*q1^5*q2+q1*q2^5+q2^6)/(q^3*q1^6+q^2*q1^5*q2+q*q1*q2^5+q2^6))*B[(1, 0, 0)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, 0)] + ((q1+q2)/(q*q1+q2))*B[(0, 1, 0)] + ((q1+q2)/(q*q1+q2))*B[(0, 0, -1)] + ((q1+q2)/(q*q1+q2))*B[(0, 0, 1)]
 
         sage: E[omega[2]]
         ((-q1*q2^3-q2^4)/(q*q1^4-q2^4))*B[(1, 0, 0)] + B[(0, 1, 0)]
@@ -567,14 +566,7 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
         + ((-q1*q2-q2^2)/(q*q1^2-q2^2))*B[(0, 0, -1)] + ((q1*q2+q2^2)/(-q*q1^2+q2^2))*B[(0, 0, 1)]
 
         sage: E[-omega[1]-omega[2]]
-        ((-q^3*q1^6-q^3*q1^5*q2-2*q^2*q1^6-3*q^2*q1^5*q2+q^2*q1^4*q2^2+2*q^2*q1^3*q2^3+q*q1^5*q2+2*q*q1^4*q2^2-q*q1^3*q2^3-2*q*q1^2*q2^4+q*q1*q2^5+q*q2^6-q1^3*q2^3-q1^2*q2^4+2*q1*q2^5+2*q2^6)/(-q^4*q1^6-q^3*q1^5*q2+q^3*q1^4*q2^2-q*q1^2*q2^4+q*q1*q2^5+q2^6))*B[(0, 0, 0)] + B[(-1, -1, 0)]
-        + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(-1, 1, 0)] + ((q1+q2)/(q*q1+q2))*B[(-1, 0, -1)] + ((-q1-q2)/(-q*q1-q2))*B[(-1, 0, 1)]
-        + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, -1, 0)]
-        + ((-q^2*q1^6-q^2*q1^5*q2-q*q1^5*q2+q*q1^3*q2^3+q1^5*q2+q1^4*q2^2-q1^3*q2^3-q1^2*q2^4+q1*q2^5+q2^6)/(-q^4*q1^6-q^3*q1^5*q2+q^3*q1^4*q2^2-q*q1^2*q2^4+q*q1*q2^5+q2^6))*B[(1, 1, 0)]
-        + ((-q*q1^4-2*q*q1^3*q2-q*q1^2*q2^2+q1^3*q2+q1^2*q2^2-q1*q2^3-q2^4)/(-q^3*q1^4-q^2*q1^3*q2-q*q1*q2^3-q2^4))*B[(1, 0, -1)]
-        + ((-q*q1^4-2*q*q1^3*q2-q*q1^2*q2^2+q1^3*q2+q1^2*q2^2-q1*q2^3-q2^4)/(-q^3*q1^4-q^2*q1^3*q2-q*q1*q2^3-q2^4))*B[(1, 0, 1)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, -1)]
-        + ((-q1-q2)/(-q*q1-q2))*B[(0, -1, 1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, -1)]
-        + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, 1)]
+        ((q^3*q1^6+q^3*q1^5*q2+2*q^2*q1^6+3*q^2*q1^5*q2-q^2*q1^4*q2^2-2*q^2*q1^3*q2^3-q*q1^5*q2-2*q*q1^4*q2^2+q*q1^3*q2^3+2*q*q1^2*q2^4-q*q1*q2^5-q*q2^6+q1^3*q2^3+q1^2*q2^4-2*q1*q2^5-2*q2^6)/(q^4*q1^6+q^3*q1^5*q2-q^3*q1^4*q2^2+q*q1^2*q2^4-q*q1*q2^5-q2^6))*B[(0, 0, 0)] + B[(-1, -1, 0)] + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(-1, 1, 0)] + ((q1+q2)/(q*q1+q2))*B[(-1, 0, -1)] + ((-q1-q2)/(-q*q1-q2))*B[(-1, 0, 1)] + ((q*q1^4+q*q1^3*q2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, -1, 0)] + ((q^2*q1^6+q^2*q1^5*q2+q*q1^5*q2-q*q1^3*q2^3-q1^5*q2-q1^4*q2^2+q1^3*q2^3+q1^2*q2^4-q1*q2^5-q2^6)/(q^4*q1^6+q^3*q1^5*q2-q^3*q1^4*q2^2+q*q1^2*q2^4-q*q1*q2^5-q2^6))*B[(1, 1, 0)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, 0, -1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(1, 0, 1)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, -1)] + ((q1+q2)/(q*q1+q2))*B[(0, -1, 1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, -1)] + ((q*q1^4+2*q*q1^3*q2+q*q1^2*q2^2-q1^3*q2-q1^2*q2^2+q1*q2^3+q2^4)/(q^3*q1^4+q^2*q1^3*q2+q*q1*q2^3+q2^4))*B[(0, 1, 1)]
 
         sage: E[omega[1]-omega[2]]
         ((q^3*q1^7+q^3*q1^6*q2-q*q1*q2^6-q*q2^7)/(q^3*q1^7-q^2*q1^5*q2^2+q*q1^2*q2^5-q2^7))*B[(0, 0, 0)] + B[(1, -1, 0)]
@@ -812,7 +804,7 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
         ((-q*q1*q2^3-q*q2^4)/(q^2*q1^4-q2^4))*B[(0, 0)] + B[(1, 0)]
 
         sage: E[2*omega[2]]      # long time # not checked against Bogdan's notes, but a good self-consistency test
-        ((-q^12*q1^6-q^12*q1^5*q2+2*q^10*q1^5*q2+5*q^10*q1^4*q2^2+3*q^10*q1^3*q2^3+2*q^8*q1^5*q2+4*q^8*q1^4*q2^2+q^8*q1^3*q2^3-q^8*q1^2*q2^4+q^8*q1*q2^5+q^8*q2^6-q^6*q1^3*q2^3+q^6*q1^2*q2^4+4*q^6*q1*q2^5+2*q^6*q2^6+q^4*q1^3*q2^3+3*q^4*q1^2*q2^4+4*q^4*q1*q2^5+2*q^4*q2^6)/(-q^12*q1^6-q^10*q1^5*q2-q^8*q1^3*q2^3+q^6*q1^4*q2^2-q^6*q1^2*q2^4+q^4*q1^3*q2^3+q^2*q1*q2^5+q2^6))*B[(0, 0)] + ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^7*q2^3+q^5*q1^2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 0)] + ((q^6*q1*q2+q^6*q2^2)/(-q^6*q1^2+q2^2))*B[(-1, -1)] + ((q^6*q1^2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 1)] + ((q^3*q1*q2+q^3*q2^2)/(-q^6*q1^2+q2^2))*B[(-1, 2)] + ((-q^7*q1^3-q^7*q1^2*q2+q^7*q1*q2^2+q^7*q2^3+2*q^5*q1^2*q2+4*q^5*q1*q2^2+2*q^5*q2^3+2*q^3*q1^2*q2+4*q^3*q1*q2^2+2*q^3*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(1, 0)] + ((-q^6*q1^2*q2-2*q^6*q1*q2^2-q^6*q2^3-q^4*q1^2*q2-2*q^4*q1*q2^2-q^4*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, -1)] + ((q^8*q1^3+q^8*q1^2*q2+q^6*q1^3+q^6*q1^2*q2-q^6*q1*q2^2-q^6*q2^3-2*q^4*q1^2*q2-4*q^4*q1*q2^2-2*q^4*q2^3-q^2*q1^2*q2-3*q^2*q1*q2^2-2*q^2*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, 1)] + ((-q^5*q1^2-q^5*q1*q2+q^3*q1*q2+q^3*q2^2+q*q1*q2+q*q2^2)/(-q^6*q1^2+q2^2))*B[(1, 2)] + ((-q^6*q1^2-q^6*q1*q2+q^4*q1*q2+q^4*q2^2+q^2*q1*q2+q^2*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 0)] + ((q^3*q1*q2+q^3*q2^2)/(-q^6*q1^2+q2^2))*B[(2, -1)] + ((-q^5*q1^2-q^5*q1*q2+q^3*q1*q2+q^3*q2^2+q*q1*q2+q*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 1)] + B[(2, 2)] + ((-q^7*q1^2*q2-2*q^7*q1*q2^2-q^7*q2^3-q^5*q1^2*q2-2*q^5*q1*q2^2-q^5*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(0, -1)] + ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-2*q^5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(0, 1)] + ((-q^6*q1^2-q^6*q1*q2+q^4*q1*q2+q^4*q2^2+q^2*q1*q2+q^2*q2^2)/(-q^6*q1^2+q2^2))*B[(0, 2)]
+        ((-q^12*q1^6-q^12*q1^5*q2+2*q^10*q1^5*q2+5*q^10*q1^4*q2^2+3*q^10*q1^3*q2^3+2*q^8*q1^5*q2+4*q^8*q1^4*q2^2+q^8*q1^3*q2^3-q^8*q1^2*q2^4+q^8*q1*q2^5+q^8*q2^6-q^6*q1^3*q2^3+q^6*q1^2*q2^4+4*q^6*q1*q2^5+2*q^6*q2^6+q^4*q1^3*q2^3+3*q^4*q1^2*q2^4+4*q^4*q1*q2^5+2*q^4*q2^6)/(-q^12*q1^6-q^10*q1^5*q2-q^8*q1^3*q2^3+q^6*q1^4*q2^2-q^6*q1^2*q2^4+q^4*q1^3*q2^3+q^2*q1*q2^5+q2^6))*B[(0, 0)] + ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^7*q2^3+q^5*q1^2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 0)] + ((-q^6*q1*q2-q^6*q2^2)/(q^6*q1^2-q2^2))*B[(-1, -1)] + ((q^6*q1^2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(-1, 1)] + ((-q^3*q1*q2-q^3*q2^2)/(q^6*q1^2-q2^2))*B[(-1, 2)] + ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-2*q^5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, 0)] + ((q^6*q1^2*q2+2*q^6*q1*q2^2+q^6*q2^3+q^4*q1^2*q2+2*q^4*q1*q2^2+q^4*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(1, -1)] + ((q^8*q1^3+q^8*q1^2*q2+q^6*q1^3+q^6*q1^2*q2-q^6*q1*q2^2-q^6*q2^3-2*q^4*q1^2*q2-4*q^4*q1*q2^2-2*q^4*q2^3-q^2*q1^2*q2-3*q^2*q1*q2^2-2*q^2*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(1, 1)] + ((q^5*q1^2+q^5*q1*q2-q^3*q1*q2-q^3*q2^2-q*q1*q2-q*q2^2)/(q^6*q1^2-q2^2))*B[(1, 2)] + ((-q^6*q1^2-q^6*q1*q2+q^4*q1*q2+q^4*q2^2+q^2*q1*q2+q^2*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 0)] + ((-q^3*q1*q2-q^3*q2^2)/(q^6*q1^2-q2^2))*B[(2, -1)] + ((-q^5*q1^2-q^5*q1*q2+q^3*q1*q2+q^3*q2^2+q*q1*q2+q*q2^2)/(-q^6*q1^2+q2^2))*B[(2, 1)] + B[(2, 2)] + ((q^7*q1^2*q2+2*q^7*q1*q2^2+q^7*q2^3+q^5*q1^2*q2+2*q^5*q1*q2^2+q^5*q2^3)/(-q^8*q1^3-q^6*q1^2*q2+q^2*q1*q2^2+q2^3))*B[(0, -1)] + ((q^7*q1^3+q^7*q1^2*q2-q^7*q1*q2^2-q^7*q2^3-2*q^5*q1^2*q2-4*q^5*q1*q2^2-2*q^5*q2^3-2*q^3*q1^2*q2-4*q^3*q1*q2^2-2*q^3*q2^3)/(q^8*q1^3+q^6*q1^2*q2-q^2*q1*q2^2-q2^3))*B[(0, 1)] + ((q^6*q1^2+q^6*q1*q2-q^4*q1*q2-q^4*q2^2-q^2*q1*q2-q^2*q2^2)/(q^6*q1^2-q2^2))*B[(0, 2)]
         sage: E.recursion(2*omega[2])
         [0, 1, 0, 2, 1, 0, 2, 1, 0]
 
@@ -997,7 +989,7 @@ class NonSymmetricMacdonaldPolynomials(CherednikOperatorsEigenvectors):
         sage: L0 = E.keys()
         sage: omega = L0.fundamental_weights()
         sage: E[2*omega[2]]
-        ((q*q1+q*q2)/(q*q1+q2))*B[(1, 2, 1)] + ((q*q1+q*q2)/(q*q1+q2))*B[(2, 1, 1)] + B[(2, 2, 0)]
+        ((-q*q1-q*q2)/(-q*q1-q2))*B[(1, 2, 1)] + ((-q*q1-q*q2)/(-q*q1-q2))*B[(2, 1, 1)] + B[(2, 2, 0)]
         sage: for d in range(4):                                    # long time (9s)
         ....:     for weight in IntegerVectors(d,3).map(list).map(L0):
         ....:         eigenvalues = E.eigenvalues(E[L0(weight)])
diff --git a/src/sage/combinat/sf/macdonald.py b/src/sage/combinat/sf/macdonald.py
index 49a42e2786..53750a6341 100644
--- a/src/sage/combinat/sf/macdonald.py
+++ b/src/sage/combinat/sf/macdonald.py
@@ -482,7 +482,7 @@ class Macdonald(UniqueRepresentation):
             sage: Ht = Sym.macdonald().Ht()
             sage: s = Sym.schur()
             sage: Ht(s([2,1]))
-            ((-q)/(-q*t^2+t^3+q^2-q*t))*McdHt[1, 1, 1] + ((q^2+q*t+t^2)/(-q^2*t^2+q^3+t^3-q*t))*McdHt[2, 1] + (t/(-q^3+q^2*t+q*t-t^2))*McdHt[3]
+            (q/(q*t^2-t^3-q^2+q*t))*McdHt[1, 1, 1] + ((-q^2-q*t-t^2)/(q^2*t^2-q^3-t^3+q*t))*McdHt[2, 1] + (t/(-q^3+q^2*t+q*t-t^2))*McdHt[3]
             sage: Ht(s([2]))
             ((-q)/(-q+t))*McdHt[1, 1] + (t/(-q+t))*McdHt[2]
         """
@@ -900,7 +900,7 @@ class MacdonaldPolynomials_generic(sfa.SymmetricFunctionAlgebra_generic):
             sage: Q.product(Q[1],Q[2])
             McdQ[2, 1] + ((q^2*t-q^2+q*t-q+t-1)/(q^2*t-1))*McdQ[3]
             sage: Ht.product(Ht[1],Ht[2])
-            ((-q^2+1)/(-q^2+t))*McdHt[2, 1] + ((-t+1)/(q^2-t))*McdHt[3]
+            ((q^2-1)/(q^2-t))*McdHt[2, 1] + ((t-1)/(-q^2+t))*McdHt[3]
         """
         return self(self._s(left) * self._s(right))
 
diff --git a/src/sage/interfaces/singular.py b/src/sage/interfaces/singular.py
index 88ea467d9e..7a9f224e9c 100644
--- a/src/sage/interfaces/singular.py
+++ b/src/sage/interfaces/singular.py
@@ -191,13 +191,21 @@ The 1x1 and 2x2 minors::
     6*y+2*x^3-6*x^2*y,
     6*x^2*y-6*x*y^2,
     6*x^2*y-6*x*y^2,
-    6*x+6*x*y^2-2*y^3
+    6*x+6*x*y^2-2*y^3,
+    0,
+    0,
+    0,
+    0
     sage: H.minor(2)
     12*y+4*x^3-12*x^2*y,
     12*x^2*y-12*x*y^2,
     12*x^2*y-12*x*y^2,
     12*x+12*x*y^2-4*y^3,
-    -36*x*y-12*x^4+36*x^3*y-36*x*y^3+12*y^4+24*x^4*y^2-32*x^3*y^3+24*x^2*y^4
+    -36*x*y-12*x^4+36*x^3*y-36*x*y^3+12*y^4+24*x^4*y^2-32*x^3*y^3+24*x^2*y^4,
+    0,
+    0,
+    0,
+    0
 
 ::
 
@@ -240,7 +248,7 @@ Groebner basis for some ideal, using Singular through Sage.
 
 ::
 
-    sage: singular.lib('poly.lib')
+    sage: singular.lib('polylib.lib')
     sage: singular.ring(32003, '(a,b,c,d,e,f)', 'lp')
             polynomial ring, over a field, global ordering
             //   coefficients: ZZ/32003
@@ -260,7 +268,7 @@ We restart everything and try again, but correctly.
 ::
 
     sage: singular.quit()
-    sage: singular.lib('poly.lib'); R = singular.ring(32003, '(a,b,c,d,e,f)', 'lp')
+    sage: singular.lib('polylib.lib'); R = singular.ring(32003, '(a,b,c,d,e,f)', 'lp')
     sage: I = singular.ideal('cyclic(6)')
     sage: I.groebner()
     f^48-2554*f^42-15674*f^36+12326*f^30-12326*f^18+15674*f^12+2554*f^6-1,
diff --git a/src/sage/libs/singular/function.pyx b/src/sage/libs/singular/function.pyx
index bf03efe222..8a9b771f26 100644
--- a/src/sage/libs/singular/function.pyx
+++ b/src/sage/libs/singular/function.pyx
@@ -938,7 +938,7 @@ cdef class Converter(SageObject):
             sage: C = Curve((x-y)*(y-z)*(z-x))
             sage: I = C.defining_ideal()
             sage: import sage.libs.singular.function_factory
-            sage: freerank = sage.libs.singular.function_factory.ff.poly__lib.freerank
+            sage: freerank = sage.libs.singular.function_factory.ff.polylib__lib.freerank
             sage: freerank(I, true)
             [-1, [x^2*y - x*y^2 - x^2*z + y^2*z + x*z^2 - y*z^2]]
 
@@ -1257,7 +1257,7 @@ cdef class SingularFunction(SageObject):
             Traceback (most recent call last):
             ...
             RuntimeError: error in Singular function call 'size':
-            Wrong number of arguments (got 2 arguments, arity code is 300)
+            Wrong number of arguments (got 2 arguments, arity code is 302)
             sage: size('foobar', ring=P)
             6
 
@@ -1308,7 +1308,7 @@ cdef class SingularFunction(SageObject):
             ...
             RuntimeError: error in Singular function call 'triangL':
             The input is no groebner basis.
-            leaving triang.lib::triangL
+            leaving triang.lib::triangL (0)
 
         Flush any stray output -- see :trac:`28622`::
 
@@ -1671,17 +1671,17 @@ def singular_function(name):
         Traceback (most recent call last):
         ...
         RuntimeError: error in Singular function call 'factorize':
-        Wrong number of arguments (got 0 arguments, arity code is 303)
+        Wrong number of arguments (got 0 arguments, arity code is 305)
         sage: factorize(f, 1, 2)
         Traceback (most recent call last):
         ...
         RuntimeError: error in Singular function call 'factorize':
-        Wrong number of arguments (got 3 arguments, arity code is 303)
+        Wrong number of arguments (got 3 arguments, arity code is 305)
         sage: factorize(f, 1, 2, 3)
         Traceback (most recent call last):
         ...
         RuntimeError: error in Singular function call 'factorize':
-        Wrong number of arguments (got 4 arguments, arity code is 303)
+        Wrong number of arguments (got 4 arguments, arity code is 305)
 
     The Singular function ``list`` can be called with any number of
     arguments::
diff --git a/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py b/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py
index 4a2a6de5f6..1975374e2a 100644
--- a/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py
+++ b/src/sage/rings/asymptotic/asymptotics_multivariate_generating_functions.py
@@ -1578,7 +1578,7 @@ class FractionWithFactoredDenominator(RingElement):
             (1, [(x*y + x + y - 1, 2)])
             sage: alpha = [4, 3]
             sage: decomp = F.asymptotic_decomposition(alpha); decomp
-            (0, []) + (-3/2*r*(1/y + 1) - 1/2/y - 1/2, [(x*y + x + y - 1, 1)])
+            (0, []) + (-2*r*(1/x + 1) - 1/2/x - 1/2, [(x*y + x + y - 1, 1)])
             sage: F1 = decomp[1]
             sage: p = {y: 1/3, x: 1/2}
             sage: asy = F1.asymptotics(p, alpha, 2, verbose=True)
@@ -1612,7 +1612,7 @@ class FractionWithFactoredDenominator(RingElement):
             sage: alpha = [3, 3, 2]
             sage: decomp = F.asymptotic_decomposition(alpha); decomp
             (0, []) +
-            (-16*r*(3/y - 4/z) - 16/y + 32/z,
+            (16*r*(3/x - 2/z) + 16/x - 16/z,
              [(x + 2*y + z - 4, 1), (2*x + y + z - 4, 1)])
             sage: F1 = decomp[1]
             sage: p = {x: 1, y: 1, z: 1}
diff --git a/src/sage/rings/ideal.py b/src/sage/rings/ideal.py
index 72548769de..53076ac62e 100644
--- a/src/sage/rings/ideal.py
+++ b/src/sage/rings/ideal.py
@@ -1709,7 +1709,7 @@ def Cyclic(R, n=None, homog=False, singular=None):
         from sage.interfaces.singular import singular as singular_default
         singular = singular_default
 
-    singular.lib("poly")
+    singular.lib("polylib")
     R2 = R.change_ring(RationalField())
     R2._singular_().set_ring()
 
@@ -1760,7 +1760,7 @@ def Katsura(R, n=None, homog=False, singular=None):
     if singular is None:
         from sage.interfaces.singular import singular as singular_default
         singular = singular_default
-    singular.lib("poly")
+    singular.lib("polylib")
     R2 = R.change_ring(RationalField())
     R2._singular_().set_ring()
 
diff --git a/src/sage/rings/polynomial/laurent_polynomial_ideal.py b/src/sage/rings/polynomial/laurent_polynomial_ideal.py
index 886458ff1e..ec8e83ea80 100644
--- a/src/sage/rings/polynomial/laurent_polynomial_ideal.py
+++ b/src/sage/rings/polynomial/laurent_polynomial_ideal.py
@@ -470,8 +470,8 @@ class LaurentPolynomialIdeal( Ideal_generic ):
             sage: p = z^2 + 1; q = z^3 + 2
             sage: I = P.ideal((p*q^2, y-z^2))
             sage: I.associated_primes()
-            (Ideal (y + 1, z^2 + 1) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field,
-             Ideal (z^2 - y, y*z + 2, y^2 + 2*z) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field)
+            (Ideal (z^2 - y, y*z + 2, y^2 + 2*z) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field,
+             Ideal (y + 1, z^2 + 1) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field)
         """
         l = self.polynomial_ideal(saturate=False).associated_primes()
         l2 = [self.ring().ideal(I.gens(), hint=I) for I in l]
@@ -490,8 +490,8 @@ class LaurentPolynomialIdeal( Ideal_generic ):
             sage: p = z^2 + 1; q = z^3 + 2
             sage: I = P.ideal((p*q^2, y-z^2))
             sage: I.minimal_associated_primes()
-            (Ideal (z^2 + 1, -z^2 + y) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field,
-             Ideal (z^3 + 2, -z^2 + y) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field)
+            (Ideal (z^3 + 2, -z^2 + y) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field,
+             Ideal (z^2 + 1, -z^2 + y) of Multivariate Laurent Polynomial Ring in x, y, z over Rational Field)
         """
         l = self.polynomial_ideal(saturate=saturate).minimal_associated_primes()
         l2 = [self.ring().ideal(I.gens(), hint=I) for I in l]
diff --git a/src/sage/rings/polynomial/multi_polynomial_element.py b/src/sage/rings/polynomial/multi_polynomial_element.py
index 43e93b823f..1bd3696c73 100644
--- a/src/sage/rings/polynomial/multi_polynomial_element.py
+++ b/src/sage/rings/polynomial/multi_polynomial_element.py
@@ -2230,7 +2230,7 @@ def degree_lowest_rational_function(r, x):
     ::
 
         sage: r = f/g; r
-        (-b*c^2 + 2)/(a*b^3*c^6 - 2*a*c)
+        (-2*b*c^2 - 1)/(2*a*b^3*c^6 + a*c)
         sage: degree_lowest_rational_function(r,a)
         -1
         sage: degree_lowest_rational_function(r,b)
diff --git a/src/sage/rings/polynomial/multi_polynomial_ideal.py b/src/sage/rings/polynomial/multi_polynomial_ideal.py
index 130d8317a7..8e76b06313 100644
--- a/src/sage/rings/polynomial/multi_polynomial_ideal.py
+++ b/src/sage/rings/polynomial/multi_polynomial_ideal.py
@@ -154,7 +154,7 @@ when the system has no solutions over the rationals.
     which is not 1. ::
 
         sage: I.groebner_basis()
-        [x + 130433*y + 59079*z, y^2 + 3*y + 17220, y*z + 5*y + 14504, 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878]
+        [x + y + 57119*z + 4, y^2 + 3*y + 17220, y*z + y + 26532, 2*y + 158864, z^2 + 17223, 2*z + 41856, 164878]
 
     Now for each prime `p` dividing this integer 164878, the Groebner
     basis of I modulo `p` will be non-trivial and will thus give a
@@ -711,16 +711,16 @@ class MPolynomialIdeal_singular_repr(
             sage: p = z^2 + 1; q = z^3 + 2
             sage: I = (p*q^2, y-z^2)*R
             sage: pd = I.complete_primary_decomposition(); pd
-            [(Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-              Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field),
-             (Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-              Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
-
-            sage: I.primary_decomposition_complete(algorithm = 'gtz')
             [(Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
               Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field),
-             (Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-              Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
+             (Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
+              Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
+
+            sage: I.primary_decomposition_complete(algorithm = 'gtz')
+            [(Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
+              Ideal (z^2 + 1, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field),
+             (Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
+              Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field)]
 
             sage: from functools import reduce
             sage: reduce(lambda Qi,Qj: Qi.intersection(Qj), [Qi for (Qi,radQi) in pd]) == I
@@ -823,8 +823,8 @@ class MPolynomialIdeal_singular_repr(
             sage: p = z^2 + 1; q = z^3 + 2
             sage: I = (p*q^2, y-z^2)*R
             sage: pd = I.primary_decomposition(); pd
-            [Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-             Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field]
+            [Ideal (z^6 + 4*z^3 + 4, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
+             Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field]
 
         ::
 
@@ -895,8 +895,8 @@ class MPolynomialIdeal_singular_repr(
             sage: p = z^2 + 1; q = z^3 + 2
             sage: I = (p*q^2, y-z^2)*R
             sage: pd = I.associated_primes(); pd
-            [Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field,
-             Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field]
+            [Ideal (z^3 + 2, y - z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field,
+             Ideal (z^2 + 1, y + 1) of Multivariate Polynomial Ring in x, y, z over Rational Field]
 
         ALGORITHM:
 
@@ -1566,8 +1566,8 @@ class MPolynomialIdeal_singular_repr(
             sage: I2 = y*R
             sage: I3 = (x, y)*R
             sage: I4 = (x^2 + x*y*z, y^2 - z^3*y, z^3 + y^5*x*z)*R
-            sage: I1.intersection(I2, I3, I4)
-            Ideal (x*y*z^20 - x*y*z^3, x*y^2 - x*y*z^3, x^2*y + x*y*z^4) of Multivariate Polynomial Ring in x, y, z over Rational Field
+            sage: I1.intersection(I2, I3, I4).groebner_basis()
+            [x^2*y + x*y*z^4, x*y^2 - x*y*z^3, x*y*z^20 - x*y*z^3]
 
         The ideals must share the same ring::
 
@@ -1617,10 +1617,8 @@ class MPolynomialIdeal_singular_repr(
             sage: p = z^2 + 1; q = z^3 + 2
             sage: I = (p*q^2, y-z^2)*R
             sage: I.minimal_associated_primes ()
-            [Ideal (z^2 + 1, -z^2 + y) of Multivariate Polynomial Ring
-            in x, y, z over Rational Field, Ideal (z^3 + 2, -z^2 + y)
-            of Multivariate Polynomial Ring in x, y, z over Rational
-            Field]
+            [Ideal (z^3 + 2, -z^2 + y) of Multivariate Polynomial Ring in x, y, z over Rational Field,
+             Ideal (z^2 + 1, -z^2 + y) of Multivariate Polynomial Ring in x, y, z over Rational Field]
 
         ALGORITHM:
 
@@ -2698,7 +2696,7 @@ class MPolynomialIdeal_singular_repr(
             return out
         elif algorithm == 'singular':
             from sage.libs.singular.function_factory import ff
-            hilbPoly = ff.poly__lib.hilbPoly
+            hilbPoly = ff.polylib__lib.hilbPoly
 
             hp = hilbPoly(self)
             t = ZZ['t'].gen()
@@ -4010,7 +4008,7 @@ class MPolynomialIdeal( MPolynomialIdeal_singular_repr, \
 
             sage: J.groebner_basis.set_cache(gb)
             sage: ideal(J.transformed_basis()).change_ring(P).interreduced_basis()  # testing trac 21884
-            [a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
+            ...[a - 60*c^3 + 158/7*c^2 + 8/7*c - 1, b + 30*c^3 - 79/7*c^2 + 3/7*c, c^4 - 10/21*c^3 + 1/84*c^2 + 1/84*c]
 
         Giac's gbasis over `\QQ` can benefit from a probabilistic lifting and
         multi threaded operations::
@@ -4113,9 +4111,9 @@ class MPolynomialIdeal( MPolynomialIdeal_singular_repr, \
             sage: P.<a,b,c> = PolynomialRing(ZZ,3)
             sage: I = P * (a + 2*b + 2*c - 1, a^2 - a + 2*b^2 + 2*c^2, 2*a*b + 2*b*c - b)
             sage: I.groebner_basis()
-            [b^3 - 181*b*c^2 + 222*c^3 - 26*b*c - 146*c^2 + 19*b + 24*c,
-             2*b*c^2 - 48*c^3 + 3*b*c + 22*c^2 - 2*b - 2*c,
-             42*c^3 + 45*b^2 + 54*b*c + 22*c^2 - 13*b - 12*c,
+            [b^3 + b*c^2 + 12*c^3 + b^2 + b*c - 4*c^2,
+             2*b*c^2 - 6*c^3 - b^2 - b*c + 2*c^2,
+             42*c^3 + b^2 + 2*b*c - 14*c^2 + b,
              2*b^2 + 6*b*c + 6*c^2 - b - 2*c,
              10*b*c + 12*c^2 - b - 4*c,
              a + 2*b + 2*c - 1]
diff --git a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx
index b3bb733d7a..831113a5c9 100644
--- a/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx
+++ b/src/sage/rings/polynomial/multi_polynomial_libsingular.pyx
@@ -1337,7 +1337,7 @@ cdef class MPolynomialRing_libsingular(MPolynomialRing_base):
             sage: R = IntegerModRing(15)['x,y']
             sage: singular(R)
             polynomial ring, over a ring (with zero-divisors), global ordering
-            //   coefficients: ZZ/bigint(15)
+            //   coefficients: ZZ/...(15)
             //   number of vars : 2
             //        block   1 : ordering dp
             //                  : names    x y
diff --git a/src/sage/rings/polynomial/plural.pyx b/src/sage/rings/polynomial/plural.pyx
index 08b2ed7211..349871f508 100644
--- a/src/sage/rings/polynomial/plural.pyx
+++ b/src/sage/rings/polynomial/plural.pyx
@@ -392,28 +392,30 @@ cdef class NCPolynomialRing_plural(Ring):
         TESTS:
 
         This example caused a segmentation fault with a previous version
-        of this method::
+        of this method. This doctest still results in a segmentation fault
+        occasionally which is difficult to isolate, so this test is partially
+        disabled (:trac:`29528`)::
 
             sage: import gc
             sage: from sage.rings.polynomial.plural import NCPolynomialRing_plural
             sage: from sage.algebras.free_algebra import FreeAlgebra
             sage: A1.<x,y,z> = FreeAlgebra(QQ, 3)
             sage: R1 = A1.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2))
-            sage: A2.<x,y,z> = FreeAlgebra(GF(5), 3)
-            sage: R2 = A2.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2))
-            sage: A3.<x,y,z> = FreeAlgebra(GF(11), 3)
-            sage: R3 = A3.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2))
-            sage: A4.<x,y,z> = FreeAlgebra(GF(13), 3)
-            sage: R4 = A4.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2))
+            sage: A2.<x,y,z> = FreeAlgebra(GF(5), 3)                                                         # not tested
+            sage: R2 = A2.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2))  # not tested
+            sage: A3.<x,y,z> = FreeAlgebra(GF(11), 3)                                                        # not tested
+            sage: R3 = A3.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2))  # not tested
+            sage: A4.<x,y,z> = FreeAlgebra(GF(13), 3)                                                        # not tested
+            sage: R4 = A4.g_algebra({y*x:x*y-z, z*x:x*z+2*x, z*y:y*z-2*y}, order=TermOrder('degrevlex', 2))  # not tested
             sage: _ = gc.collect()
             sage: foo = R1.gen(0)
             sage: del foo
             sage: del R1
             sage: _ = gc.collect()
-            sage: del R2
-            sage: _ = gc.collect()
-            sage: del R3
-            sage: _ = gc.collect()
+            sage: del R2            # not tested
+            sage: _ = gc.collect()  # not tested
+            sage: del R3            # not tested
+            sage: _ = gc.collect()  # not tested
         """
         singular_ring_delete(self._ring)
 
@@ -2888,7 +2890,8 @@ cpdef MPolynomialRing_libsingular new_CRing(RingWrap rw, base_ring):
     self.__ngens = rw.ngens()
     self.__term_order =  TermOrder(rw.ordering_string(), force=True)
 
-    ParentWithGens.__init__(self, base_ring, rw.var_names())
+    ParentWithGens.__init__(self, base_ring, tuple(rw.var_names()),
+                            normalize=False)
 #    self._populate_coercion_lists_()  # ???
 
     #MPolynomialRing_generic.__init__(self, base_ring, n, names, order)
diff --git a/src/sage/rings/polynomial/polynomial_singular_interface.py b/src/sage/rings/polynomial/polynomial_singular_interface.py
index 37f131b585..d9c33d9c2b 100644
--- a/src/sage/rings/polynomial/polynomial_singular_interface.py
+++ b/src/sage/rings/polynomial/polynomial_singular_interface.py
@@ -165,7 +165,7 @@ class PolynomialRing_singular_repr:
             sage: R = IntegerModRing(15)['x,y']
             sage: singular(R)
             polynomial ring, over a ring (with zero-divisors), global ordering
-            //   coefficients: ZZ/bigint(15)
+            //   coefficients: ZZ/...(15)
             //   number of vars : 2
             //        block   1 : ordering dp
             //                  : names    x y
diff --git a/src/sage/schemes/curves/projective_curve.py b/src/sage/schemes/curves/projective_curve.py
index 2a9772da51..4c84a932bc 100644
--- a/src/sage/schemes/curves/projective_curve.py
+++ b/src/sage/schemes/curves/projective_curve.py
@@ -2000,7 +2000,7 @@ class ProjectivePlaneCurve_finite_field(ProjectivePlaneCurve_field):
             sage: C = Curve(f); pts = C.rational_points()
             sage: D = C.divisor([ (3, pts[0]), (-1,pts[1]), (10, pts[5]) ])
             sage: C.riemann_roch_basis(D)
-            [(-x - 2*y)/(-2*x - 2*y), (-x + z)/(x + y)]
+            [(-2*x + y)/(x + y), (-x + z)/(x + y)]
 
         .. NOTE::