1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
From: Elias Werberich <elias@werberich.de>
Date: Thu, 16 Mar 2017 11:00:22 +0100
Subject: [PATCH] src: Add support for OpenSSL 1.1.0 and higher
With OpenSSL 1.1.0 and higher API changes were introduced so some
structures have become opaque which makes direct access impossible. In
order to support builds with newer OpenSSL versions, PeerVPN has to be
patched to access needed data of these structures indirectly.
More information can be found at https://www.openssl.org/news/cl110.txt
Signed-off-by: Elias Werberich <elias@werberich.de>
---
src/libp2psec/crypto.c | 87 +++++++++++++++++++++++++++++++++++++++++++++++++-
src/libp2psec/dh.c | 16 ++++++++++
2 files changed, 102 insertions(+), 1 deletion(-)
diff --git a/libp2psec/crypto.c b/libp2psec/crypto.c
index d499963..802f8aa 100644
--- libp2psec/crypto.c
+++ libp2psec/crypto.c
@@ -47,9 +47,15 @@
// cipher context storage
struct s_crypto {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
EVP_CIPHER_CTX enc_ctx;
EVP_CIPHER_CTX dec_ctx;
HMAC_CTX hmac_ctx;
+#else
+ EVP_CIPHER_CTX *enc_ctx;
+ EVP_CIPHER_CTX *dec_ctx;
+ HMAC_CTX *hmac_ctx;
+#endif
};
@@ -169,44 +175,77 @@ static int cryptoSetKeys(struct s_crypto *ctxs, const int count, const unsigned
const EVP_MD *out_md = EVP_sha256();
const EVP_CIPHER *out_cipher = EVP_aes_256_cbc();
const int key_size = EVP_CIPHER_key_length(out_cipher);
- HMAC_CTX hmac_ctx;
int16_t i;
unsigned char in[2];
int j,k;
// setup hmac as the pseudorandom function
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
+ HMAC_CTX hmac_ctx;
HMAC_CTX_init(&hmac_ctx);
+#else
+ HMAC_CTX *hmac_ctx = HMAC_CTX_new();
+#endif
// calculate seed key
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
HMAC_Init_ex(&hmac_ctx, nonce_buf, nonce_len, keygen_md, NULL);
HMAC_Update(&hmac_ctx, secret_buf, secret_len);
HMAC_Final(&hmac_ctx, seed_key, (unsigned int *)&seed_key_len);
+#else
+ HMAC_Init_ex(hmac_ctx, nonce_buf, nonce_len, keygen_md, NULL);
+ HMAC_Update(hmac_ctx, secret_buf, secret_len);
+ HMAC_Final(hmac_ctx, seed_key, (unsigned int *)&seed_key_len);
+#endif
// calculate derived keys
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
HMAC_Init_ex(&hmac_ctx, seed_key, seed_key_len, keygen_md, NULL);
HMAC_Update(&hmac_ctx, nonce_buf, nonce_len);
HMAC_Final(&hmac_ctx, cur_key, (unsigned int *)&cur_key_len);
+#else
+ HMAC_Init_ex(hmac_ctx, seed_key, seed_key_len, keygen_md, NULL);
+ HMAC_Update(hmac_ctx, nonce_buf, nonce_len);
+ HMAC_Final(hmac_ctx, cur_key, (unsigned int *)&cur_key_len);
+#endif
i = 0;
j = 0;
k = 0;
while(k < count) {
// calculate next key
utilWriteInt16(in, i);
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
HMAC_Init_ex(&hmac_ctx, NULL, -1, NULL, NULL);
HMAC_Update(&hmac_ctx, cur_key, cur_key_len);
HMAC_Update(&hmac_ctx, nonce_buf, nonce_len);
HMAC_Update(&hmac_ctx, in, 2);
HMAC_Final(&hmac_ctx, cur_key, (unsigned int *)&cur_key_len);
+#else
+ HMAC_Init_ex(hmac_ctx, NULL, -1, NULL, NULL);
+ HMAC_Update(hmac_ctx, cur_key, cur_key_len);
+ HMAC_Update(hmac_ctx, nonce_buf, nonce_len);
+ HMAC_Update(hmac_ctx, in, 2);
+ HMAC_Final(hmac_ctx, cur_key, (unsigned int *)&cur_key_len);
+#endif
if(cur_key_len < key_size) return 0; // check if key is long enough
switch(j) {
case 1:
// save this key as the decryption and encryption key
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
if(!EVP_EncryptInit_ex(&ctxs[k].enc_ctx, out_cipher, NULL, cur_key, NULL)) return 0;
if(!EVP_DecryptInit_ex(&ctxs[k].dec_ctx, out_cipher, NULL, cur_key, NULL)) return 0;
+#else
+ if(!EVP_EncryptInit_ex(ctxs[k].enc_ctx, out_cipher, NULL, cur_key, NULL)) return 0;
+ if(!EVP_DecryptInit_ex(ctxs[k].dec_ctx, out_cipher, NULL, cur_key, NULL)) return 0;
+#endif
break;
case 2:
// save this key as the hmac key
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
HMAC_Init_ex(&ctxs[k].hmac_ctx, cur_key, cur_key_len, out_md, NULL);
+#else
+ HMAC_Init_ex(ctxs[k].hmac_ctx, cur_key, cur_key_len, out_md, NULL);
+#endif
break;
default:
// throw this key away
@@ -221,7 +260,11 @@ static int cryptoSetKeys(struct s_crypto *ctxs, const int count, const unsigned
}
// clean up
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
HMAC_CTX_cleanup(&hmac_ctx);
+#else
+ HMAC_CTX_free(hmac_ctx);
+#endif
return 1;
}
@@ -241,9 +284,15 @@ static void cryptoDestroy(struct s_crypto *ctxs, const int count) {
int i;
cryptoSetKeysRandom(ctxs, count);
for(i=0; i<count; i++) {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
HMAC_CTX_cleanup(&ctxs[i].hmac_ctx);
EVP_CIPHER_CTX_cleanup(&ctxs[i].dec_ctx);
EVP_CIPHER_CTX_cleanup(&ctxs[i].enc_ctx);
+#else
+ HMAC_CTX_free(ctxs[i].hmac_ctx);
+ EVP_CIPHER_CTX_free(ctxs[i].dec_ctx);
+ EVP_CIPHER_CTX_free(ctxs[i].enc_ctx);
+#endif
}
}
@@ -252,9 +301,15 @@ static void cryptoDestroy(struct s_crypto *ctxs, const int count) {
static int cryptoCreate(struct s_crypto *ctxs, const int count) {
int i;
for(i=0; i<count; i++) {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
EVP_CIPHER_CTX_init(&ctxs[i].enc_ctx);
EVP_CIPHER_CTX_init(&ctxs[i].dec_ctx);
HMAC_CTX_init(&ctxs[i].hmac_ctx);
+#else
+ ctxs[i].enc_ctx = EVP_CIPHER_CTX_new();
+ ctxs[i].dec_ctx = EVP_CIPHER_CTX_new();
+ ctxs[i].hmac_ctx = HMAC_CTX_new();
+#endif
}
if(cryptoSetKeysRandom(ctxs, count)) {
return 1;
@@ -270,9 +325,15 @@ static int cryptoCreate(struct s_crypto *ctxs, const int count) {
static int cryptoHMAC(struct s_crypto *ctx, unsigned char *hmac_buf, const int hmac_len, const unsigned char *in_buf, const int in_len) {
unsigned char hmac[EVP_MAX_MD_SIZE];
int len;
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
HMAC_Init_ex(&ctx->hmac_ctx, NULL, -1, NULL, NULL);
HMAC_Update(&ctx->hmac_ctx, in_buf, in_len);
HMAC_Final(&ctx->hmac_ctx, hmac, (unsigned int *)&len);
+#else
+ HMAC_Init_ex(ctx->hmac_ctx, NULL, -1, NULL, NULL);
+ HMAC_Update(ctx->hmac_ctx, in_buf, in_len);
+ HMAC_Final(ctx->hmac_ctx, hmac, (unsigned int *)&len);
+#endif
if(len < hmac_len) return 0;
memcpy(hmac_buf, hmac, hmac_len);
return 1;
@@ -302,9 +363,15 @@ static int cryptoSetSessionKeys(struct s_crypto *session_ctx, struct s_crypto *c
if(!cryptoHMAC(md_keygen_ctx, hmac_key, key_size, nonce, nonce_len)) return 0;
// set the keys
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
if(!EVP_EncryptInit_ex(&session_ctx->enc_ctx, st_cipher.cipher, NULL, cipher_key, NULL)) return 0;
if(!EVP_DecryptInit_ex(&session_ctx->dec_ctx, st_cipher.cipher, NULL, cipher_key, NULL)) return 0;
HMAC_Init_ex(&session_ctx->hmac_ctx, hmac_key, key_size, st_md.md, NULL);
+#else
+ if(!EVP_EncryptInit_ex(session_ctx->enc_ctx, st_cipher.cipher, NULL, cipher_key, NULL)) return 0;
+ if(!EVP_DecryptInit_ex(session_ctx->dec_ctx, st_cipher.cipher, NULL, cipher_key, NULL)) return 0;
+ HMAC_Init_ex(session_ctx->hmac_ctx, hmac_key, key_size, st_md.md, NULL);
+#endif
return 1;
}
@@ -326,10 +393,19 @@ static int cryptoEnc(struct s_crypto *ctx, unsigned char *enc_buf, const int enc
cryptoRand(iv, iv_len);
memcpy(&enc_buf[hmac_len], iv, iv_len);
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
if(!EVP_EncryptInit_ex(&ctx->enc_ctx, NULL, NULL, NULL, iv)) { return 0; }
if(!EVP_EncryptUpdate(&ctx->enc_ctx, &enc_buf[(hdr_len)], &len, dec_buf, dec_len)) { return 0; }
+#else
+ if(!EVP_EncryptInit_ex(ctx->enc_ctx, NULL, NULL, NULL, iv)) { return 0; }
+ if(!EVP_EncryptUpdate(ctx->enc_ctx, &enc_buf[(hdr_len)], &len, dec_buf, dec_len)) { return 0; }
+#endif
cr_len = len;
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
if(!EVP_EncryptFinal(&ctx->enc_ctx, &enc_buf[(hdr_len + cr_len)], &len)) { return 0; }
+#else
+ if(!EVP_EncryptFinal(ctx->enc_ctx, &enc_buf[(hdr_len + cr_len)], &len)) { return 0; }
+#endif
cr_len += len;
if(!cryptoHMAC(ctx, hmac, hmac_len, &enc_buf[hmac_len], (iv_len + cr_len))) { return 0; }
@@ -357,10 +433,19 @@ static int cryptoDec(struct s_crypto *ctx, unsigned char *dec_buf, const int dec
memset(iv, 0, crypto_MAXIVSIZE);
memcpy(iv, &enc_buf[hmac_len], iv_len);
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
if(!EVP_DecryptInit_ex(&ctx->dec_ctx, NULL, NULL, NULL, iv)) { return 0; }
if(!EVP_DecryptUpdate(&ctx->dec_ctx, dec_buf, &len, &enc_buf[hdr_len], (enc_len - hdr_len))) { return 0; }
+#else
+ if(!EVP_DecryptInit_ex(ctx->dec_ctx, NULL, NULL, NULL, iv)) { return 0; }
+ if(!EVP_DecryptUpdate(ctx->dec_ctx, dec_buf, &len, &enc_buf[hdr_len], (enc_len - hdr_len))) { return 0; }
+#endif
cr_len = len;
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
if(!EVP_DecryptFinal(&ctx->dec_ctx, &dec_buf[cr_len], &len)) { return 0; }
+#else
+ if(!EVP_DecryptFinal(ctx->dec_ctx, &dec_buf[cr_len], &len)) { return 0; }
+#endif
cr_len += len;
return cr_len;
diff --git a/libp2psec/dh.c b/libp2psec/dh.c
index d66f1b9..b77b680 100644
--- libp2psec/dh.c
+++ libp2psec/dh.c
@@ -81,10 +81,18 @@ CXzWzPkElg5L22pMUCPfYxo10HKoUHmSYwIBAg==\n\
// Generate a key.
static int dhGenKey(struct s_dh_state *dhstate) {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
BIGNUM *bn;
+#else
+ const BIGNUM *bn;
+#endif
int bn_size;
if(DH_generate_key(dhstate->dh)) {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
bn = dhstate->dh->pub_key;
+#else
+ DH_get0_key(dhstate->dh, &bn, NULL);
+#endif
bn_size = BN_num_bytes(bn);
if((bn_size > dh_MINSIZE) && (bn_size < dh_MAXSIZE)) {
BN_bn2bin(bn, dhstate->pubkey);
@@ -152,13 +160,21 @@ static int dhGetPubkey(unsigned char *buf, const int buf_size, const struct s_dh
// Generate symmetric keys. Returns 1 if succesful.
static int dhGenCryptoKeys(struct s_crypto *ctx, const int ctx_count, const struct s_dh_state *dhstate, const unsigned char *peerkey, const int peerkey_len, const unsigned char *nonce, const int nonce_len) {
BIGNUM *bn = dhstate->bn;
+#if OPENSSL_VERSION_NUMBER >= 0x10100000L
+ const BIGNUM *bndh;
+#endif
DH *dh = dhstate->dh;
int ret = 0;
int maxsize = DH_size(dh);
unsigned char secret[maxsize];
int size;
BN_bin2bn(peerkey, peerkey_len, bn);
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
if(BN_ucmp(bn, dh->pub_key) != 0) {
+#else
+ DH_get0_key(dh, &bndh, NULL);
+ if(BN_ucmp(bn, bndh) != 0) {
+#endif
size = DH_compute_key(secret, bn, dh);
if(size > 0) {
ret = cryptoSetKeys(ctx, ctx_count, secret, size, nonce, nonce_len);
--
2.12.2
|